Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Chem Sci ; 7(1): 559-568, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-28791105

ABSTRACT

Photochemical upconversion based on triplet-triplet annihilation (TTA-UC) is employed to enhance the short-circuit currents generated by two varieties of thin-film solar cells, a hydrogenated amorphous silicon (a-Si:H) solar cell and a dye-sensitized solar cell (DSC). TTA-UC is exploited to harvest transmitted sub-bandgap photons, combine their energies and re-radiate upconverted photons back towards the solar cells. In the present study we employ a dual-emitter TTA-UC system which allows for significantly improved UC quantum yields as compared to the previously used single-emitter TTA systems. In doing so we achieve record photo-current enhancement values for both the a-Si:H device and the DSC, surpassing 10-3 mA cm-2 sun-2 for the first time for a TTA-UC system and marking a record for upconversion-enhanced solar cells in general. We discuss pertinent challenges of the TTA-UC technology which need to be addressed in order to achieve its viable device application.

2.
Phys Chem Chem Phys ; 17(38): 24826-30, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26344650

ABSTRACT

A new mechanism of charge photogeneration is demonstrated for the first time, based on organic molecular structures. This intermediate band approach, integrated into a dye-sensitised solar cell configuration is shown to generate charges upon illumination with low energy photons. Specifically 610 nm photoexcitation of Pt porphyrins, through a series of energy transfer steps and triplet-triplet annihilation, excites a higher energy absorption onset molecule, which is then capable of charge injection into TiO2. Transient absorption measurements reveal further detail of the processes involved.

3.
J Phys Chem Lett ; 6(15): 3061-6, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26267203

ABSTRACT

Photochemical upconversion via triplet-triplet annihilation is a promising technology for improving the efficiency of photovoltaic devices. Previous studies have shown that the efficiency of upconversion depends largely on two rate constants intrinsic to the emitting species. Here, we report that one of these rate constants can be altered by deuteration, leading to enhanced upconversion efficiency. For perylene, deuteration decreases the first order decay rate constant by 16 ± 9% at 298 K, which increases the linear upconversion response by 45 ± 21% in the low excitation regime.

4.
J Vis Exp ; (91): 52028, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25285452

ABSTRACT

The poor response of dye-sensitized solar cells (DSCs) to red and infrared light is a significant impediment to the realization of higher photocurrents and hence higher efficiencies. Photon up-conversion by way of triplet-triplet annihilation (TTA-UC) is an attractive technique for using these otherwise wasted low energy photons to produce photocurrent, while not interfering with the photoanodic performance in a deleterious manner. Further to this, TTA-UC has a number of features, distinct from other reported photon up-conversion technologies, which renders it particularly suitable for coupling with DSC technology. In this work, a proven high performance TTA-UC system, comprising a palladium porphyrin sensitizer and rubrene emitter, is combined with a high performance DSC (utilizing the organic dye D149) in an integrated device. The device shows an enhanced response to sub-bandgap light over the absorption range of the TTA-UC sub-unit resulting in the highest figure of merit for up-conversion assisted DSC performance to date.


Subject(s)
Coloring Agents/chemistry , Photons , Solar Energy
5.
Molecules ; 18(8): 8959-75, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23896620

ABSTRACT

We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.


Subject(s)
Azides/chemical synthesis , Iridium/chemistry , Triazoles/chemical synthesis , Azides/chemistry , Catalysis , Click Chemistry , Copper/chemistry , Luminescence , Molecular Structure , Polymers/chemistry , Triazoles/chemistry
6.
J Phys Chem Lett ; 4(12): 2073-8, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-26283255

ABSTRACT

Photon upconversion (UC) by triplet-triplet annihilation (TTA-UC) is employed in order to enhance the response of solar cells to sub-bandgap light. Here, we present the first report of an integrated photovoltaic device, combining a dye-sensitized solar cell (DSC) and TTA-UC system. The integrated device displays enhanced current under sub-bandgap illumination, resulting in a figure of merit (FoM) under low concentration (3 suns), which is competitive with the best values recorded to date for nonintegrated systems. Thus, we demonstrate both the compatibility of DSC and TTA-UC and a viable method for device integration.

7.
J Phys Chem A ; 116(30): 7898-905, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22775228

ABSTRACT

We report the synthesis and ultrafast excited-state dynamics of two new meso-meso, ß-ß, ß-ß triply fused diporphyrins, Zn-3DP and Pd-3DP. Both compounds were found to have short excited-state lifetimes: Zn-3DP possessed an average S1 lifetime of 14 ps before nonradiative deactivation to the ground state, whereas Pd-3DP displayed a longer average S1 lifetime of 18 ps before crossing to the T1 state, which itself possessed a very short triplet lifetime of 1.7 ns. The excited-state dynamics of Zn-3DP, compared to similar zinc(II) diporphyrins reported in the literature, suggests that a conical intersection of the S1 and S0 potential energy surfaces plays a major role as a deactivation pathway of these molecules. Furthermore, the short triplet lifetime of Pd-3DP, compared to other diporphyrins that also exploit the intramolecular heavy atom effect, reveals that the position of the heavy atom within the diporphyrin framework influences the strength of spin-orbit coupling. The implications for employing triply fused diporphyrins as NIR-absorbing triplet sensitizers are discussed.

8.
J Phys Chem A ; 115(6): 1047-53, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21265551

ABSTRACT

Conventional photochemical upconversion (UC) through homo-geneous triplet-triplet annihilation (TTA) is subject to several enthalpic losses that limit the UC margin. Here, we address one of these losses: the triplet energy transfer (TET) from the sensitizer to the emitter molecules. Usually, the triplet energy level of the emitter is set below that of the sensitizer. In our system, the triplet energy level of the emitter exceeds that of the sensitizer by ∼600 cm(-1). Choosing suitable concentrations for the sensitizer and emitter molecules, we can exploit entropy as a driving force for the migration of triplet excitation from the sensitizer to the emitter manifolds. Thereby we obtain a new record for the peak-to-peak TTA-UC energy margin of 0.94 eV. A modified Stern-Volmer analysis yields a TET rate constant of 2.0 × 10(7) M(-1) s(-1). Despite being relatively inefficient, the upconverted fluorescence is easily visible to the naked eye with irradiation intensities as low as 2 W cm(-2).

9.
Dalton Trans ; 40(9): 2053-61, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21218240

ABSTRACT

Four new hetero- and homo-leptic iridium(III) bisterpyridine complexes have been prepared which incorporate aniline (tpy-φ-NH(2)), benzoic acid (tpy-φ-COOH), and benzyl alcohol (tpy-φ-CH(2)OH) substituents at the 4' positions of the tpy ligands (tpy = 2,2':6',2''-terpyridine, φ = phenylene). The electrochemical behaviour and ground and excited state spectroscopic properties of the complexes are reported, and the X-ray crystal structures of a homoleptic benzyl alcohol [Ir(tpy-φ-CH(2)OH)(2)](PF(6))(3), homoleptic aniline [Ir(tpy-φ-NH(2))(2)](PF(6))(3), and heteroleptic benzyl alcohol/aniline substituted complex [Ir(tpy-φ-CH(2)OH)(tpy-φ-NH(2))](PF(6))(3) have been solved. Complexes with aniline substituents were found to display absorption bands at around 430 nm corresponding to intraligand charge transfer (ILCT) that are sensitive to changes in solvent and pH. Strong emission in the visible region involving the ILCT state is observed in two of the complexes (Φ(e) = 0.7% and 2.6%) in acetonitrile. In the heteroleptic aniline/benzyl alcohol complex the Stokes shift is shown to be linearly related to solvent polarisability according to the Lippert equation, but only for solvents with weak hydrogen bonding interactions. Additionally, in water, emission from the ILCT state is quenched and only weak ligand centred (LC) emission is observed. The long lifetimes and quantum yields of these complexes make them interesting candidates for probes in sensing applications, especially [Ir(tpy-φ-CH(2)OH)(tpy-φ-NH(2))(2)](PF(6))(3) due to its unusual sensitivity to the solvent environment.

10.
Opt Express ; 18 Suppl 2: A161-6, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20588584

ABSTRACT

Luminescent solar concentrators promise to reduce the cost of solar energy, but are hindered by a number of losses. Escape of luminescence through the large waveguide-air interfaces can be attenuated through alignment of the optical transition dipole of the luminophore along the waveguide surface normal, directing the maximum possible proportion of luminescence into waveguide modes. We demonstrate such alignment using a guest-host dye-doped liquid crystal sandwiched between conductive glass slides. Application of a potential while illuminating through a narrow edge caused a drop in the intensity of luminescence escaping the large surfaces, and an increase in the intensity of light escaping the narrow edges of the system. This is explained in terms of alignment of the transition dipoles of the dye. We discuss implementation in a luminescent solar concentrator.

11.
Phys Chem Chem Phys ; 12(1): 66-71, 2010 Jan 07.
Article in English | MEDLINE | ID: mdl-20024445

ABSTRACT

Photochemical upconversion is performed, whereby emitter triplet states are produced through triplet energy transfer from sensitizer molecules excited with low energy photons. The triplet emitter molecules undergo triplet-triplet annihilation to yield excited singlet states which emit upconverted fluorescence. Experiments comparing the 560 nm prompt fluorescence when rubrene emitter molecules are excited directly, using 525 nm laser pulses, to the delayed, upconverted fluorescence when the porphyrin sensitizer molecules are excited with 670 nm laser pulses reveal annihilation efficiencies to produce excited singlet emitters in excess of 20%. Conservative measurements reveal a 25% annihilation efficiency, while a direct comparison between the prompt and delayed fluorescence yield suggests a value as high as 33%. Due to fluorescence quenching, the photon upconversion efficiencies are lower, at 16%.

SELECTION OF CITATIONS
SEARCH DETAIL