Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 787
Filter
1.
Discov Oncol ; 15(1): 195, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809316

ABSTRACT

INTRODUCTION: Lung cancer (LC) is the most common solid tumor and is currently considered the primary cause of cancer-related deaths worldwide. In clinical efficacy studies, it was not difficult to find that the combination of SFI and chemotherapy could improve the general condition of patients, reduce the side effects of chemotherapy drugs, and have a cooperative antitumor effect in NSCLC patients. However, whether SFI can be used as a novel antitumor drug is still unknown. METHODS: First, meta-analysis aimed to explore the efficacy of SFI in NSCLC patients, and SFI was identified by ultra-performance liquid chromatography‒mass spectrometry (UPLC‒MS). Cell proliferation, migration, and invasion were explored by Cell Counting Kit-8 (CCK-8), scratch healing, and Transwell assays, respectively. Cell cycle and apoptosis assays were performed by flow cytometry. Transcriptome sequencing analysis was performed in four NSCLC cell lines. Differential expression analysis was used to identify potential targets. Apoptosis-related protein levels were detected by Western blotting assays. The effects of SFI in NSCLC were further investigated by mouse xenografts. RESULTS: SFI could markedly improve the chemotherapy efficacy of NSCLC patients. The main active ingredients include flavonoids and terpenoids, which can effectively exert antitumor effects. SFI could not only inhibit tumor cell proliferation and cell migration/invasion but also regulate the cell cycle and promote tumor cell apoptosis. In NSCLC, SFI could enhance the transcription level of the CHOP gene, thereby upregulating the expression of the proapoptotic proteins Bax and caspase 3, and inhibiting the expression of the antiapoptotic protein Bcl-2. SFI hindered the growth of mouse NSCLC xenografts in vivo. CONCLUSIONS: SFI hindered tumor progression and might promote apoptosis by increasing the expression of Bax, caspase 3 and decreasing the level of Bcl-2 in NSCLC.

2.
Food Chem ; 453: 139563, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38776791

ABSTRACT

Molecular hydrogen is beneficial for fruits quality improvement. However, the mechanism involved, especially cellular metabolic responses, has not been well established. Here, the integrated widely targeted metabolomics analysis (UPLC-MS/MS) and biochemical evidence revealed that hydrogen-based irrigation could orchestrate, either directly or indirectly, an array of physiological responses in blueberry (Vaccinium spp.) during harvesting stage, especially for the delayed senescence in harvested stage (4 °C for 12 d). The hubs to these changes are wide-ranging metabolic reprogramming and antioxidant machinery. A total of 1208 distinct annotated metabolites were identified, and the characterization of differential accumulated metabolites (DAMs) revealed that the reprogramming, particularly, involves phenolic acids and flavonoids accumulation. These changes were positively matched with the transcriptional profiles of representative genes for their synthesis during the growth stage. Together, our findings open a new window for development of hydrogen-based agriculture that increases the shelf-life of fruits in a smart and sustainable manner.

3.
Pak J Pharm Sci ; 37(1): 139-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741410

ABSTRACT

Liposomes, a nanoscale carrier, plays an important role in the delivery of drug, affects the in vivo efficacy of drugs. In this paper, silymarin(SM)-loaded liposomes was optimized using the response surface method (RSM), with entrapment efficiency (EE%) as an index. The formulation was optimized as follow: lecithin (7.8mg/mL), SM/lecithin (1/26) and lecithin/cholesterol (10/1). The optimized SM liposomes had a high EE (96.58 ±3.06%), with a particle size of 290.3 ±10.5nm and a zeta potential of +22.98 ±1.73mV. In vitro release tests revealed that SM was released in a sustained-release manner, primarily via diffusion mechanism. In vitro cytotoxicity studies demonstrated that the prepared SM liposomes had stronger inhibitory effects than the model drug. Overall, these results indicate that this liposome system is suitable for intravenous delivery to enhance the antitumor effects of SM.


Subject(s)
Lecithins , Liposomes , Particle Size , Silymarin , Silymarin/pharmacology , Silymarin/chemistry , Silymarin/administration & dosage , Humans , Lecithins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Line, Tumor , Cell Survival/drug effects , Cholesterol/chemistry , Chemistry, Pharmaceutical , Drug Compounding
4.
Article in English | MEDLINE | ID: mdl-38743531

ABSTRACT

Remote photoplethysmography (rPPG) is a non-contact method that employs facial videos for measuring physiological parameters. Existing rPPG methods have achieved remarkable performance. However, the success mainly profits from supervised learning over massive labeled data. On the other hand, existing unsupervised rPPG methods fail to fully utilize spatio-temporal features and encounter challenges in low-light or noise environments. To address these problems, we propose an unsupervised contrast learning approach, ST-Phys. We incorporate a low-light enhancement module, a temporal dilated module, and a spatial enhanced module to better deal with long-term dependencies under the random low-light conditions. In addition, we design a circular margin loss, wherein rPPG signals originating from identical videos are attracted, while those from distinct videos are repelled. Our method is assessed on six openly accessible datasets, including RGB and NIR videos. Extensive experiments reveal the superior performance of our proposed ST-Phys over state-of-the-art unsupervised rPPG methods. Moreover, it offers advantages in parameter reduction and noise robustness.

5.
J Ethnopharmacol ; 332: 118245, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679399

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM: This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS: AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS: After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION: Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.

6.
Bioresour Technol ; 401: 130716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641301

ABSTRACT

Oleanolic acid and its derivatives are widely used in the pharmaceutical, agricultural, cosmetic and food industries. Previous studies have shown that oleanolic acid production levels in engineered cell factories are low, which is why oleanolic acid is still widely extracted from traditional medicinal plants. To construct a highly efficient oleanolic acid production strain, rate-limiting steps were regulated by inducible promoters and the expression of key genes in the oleanolic acid synthetic pathway was enhanced. Subsequently, precursor pool expansion, pathway refactoring and diploid construction were considered to harmonize cell growth and oleanolic acid production. The multi-strategy combination promoted oleanolic acid production of up to 4.07 g/L in a 100 L bioreactor, which was the highest level reported.


Subject(s)
Oleanolic Acid , Saccharomyces cerevisiae , Oleanolic Acid/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Bioreactors , Metabolic Engineering/methods , Genetic Engineering/methods , Promoter Regions, Genetic
7.
J Craniofac Surg ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498013

ABSTRACT

This study aimed to introduce a surgery technique-Sommerlad-Furlow palatoplasty (SFP) and analyze the risk factors of velopharyngeal insufficiency (VPI) and palatal fistula after SFP. Cases after SFP under the age of 5 between 2011 and 2021 were reviewed, and the cases with complete follow-up information were included. Univariate and multivariate logistic regression were used to evaluate the effects of surgical age, surgery technique, surgeon's experience, and cleft type on velopharyngeal function and the occurrence of palatal fistula. SFP is a safe and effective procedure to increase the palatal length and reconstruct the levator veli palatini sling. The speech outcome after SFP was associated with cleft type and age at operation. Age = 1.285 years is the best cutoff value. The fistula occurrence was associated with cleft type only.

8.
Research (Wash D C) ; 7: 0328, 2024.
Article in English | MEDLINE | ID: mdl-38550778

ABSTRACT

Pixel-level structure segmentations have attracted considerable attention, playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine vision. However, current light field modeling methods fail to integrate appearance and geometric structural information into a coherent semantic space, thereby limiting the capability of light field transmission for visual knowledge. In this paper, we propose a general light field modeling method for pixel-level structure segmentation, comprising a generative light field prompting encoder (LF-GPE) and a prompt-based masked light field pretraining (LF-PMP) network. Our LF-GPE, serving as a light field backbone, can extract both appearance and geometric structural cues simultaneously. It aligns these features into a unified visual space, facilitating semantic interaction. Meanwhile, our LF-PMP, during the pretraining phase, integrates a mixed light field and a multi-view light field reconstruction. It prioritizes considering the geometric structural properties of the light field, enabling the light field backbone to accumulate a wealth of prior knowledge. We evaluate our pretrained LF-GPE on two downstream tasks: light field salient object detection and semantic segmentation. Experimental results demonstrate that LF-GPE can effectively learn high-quality light field features and achieve highly competitive performance in pixel-level segmentation tasks.

9.
J Med Chem ; 67(6): 4583-4602, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38498304

ABSTRACT

Toll-like receptor (TLR) 2 is a transmembrane receptor that participates in the innate immune response by forming a heterodimer with TLR1 or TLR6. TLR2 agonists play an important role in tumor therapy. Herein, we synthesized a series of 3-(2H-chromen-3-yl)-5-aryl-1,2,4-oxadiazole derivatives and identified WYJ-2 as a potent small and selective molecule agonist of TLR2/1, with an EC50 of 18.57 ± 0.98 nM in human TLR2 and TLR1 transient-cotransfected HEK 293T cells. WYJ-2 promoted the formation of TLR2/1 heterodimers and activated the nuclear factor kappa B (NF-κB) signaling pathway. Moreover, our study indicated that WYJ-2 could induce pyroptosis in cancer cells, mediated by activating the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. WYJ-2 exhibited effective anti-non-small cell lung cancer (NSCLC) activity in vitro and in vivo. The discovery that activating TLR2/1 induces pyroptosis in cancer cells may highlight the prospects of TLR2/1 agonists in cancer treatment in the future.


Subject(s)
Lung Neoplasms , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 1/metabolism , Lung Neoplasms/drug therapy , Signal Transduction , NF-kappa B/metabolism
10.
Orthop Surg ; 16(5): 1073-1078, 2024 May.
Article in English | MEDLINE | ID: mdl-38488263

ABSTRACT

OBJECTIVES: Bankart lesion is one of the most common lesions of the glenohumeral joint. Several double-row suture methods were reported for Bankart repair, which could provide more stability, yet more motion limitation and complications. Therefore, we introduced a new double-row Bankart repair technique, key point double-row suture which used one anchor in the medial line. The purpose of this article is to investigate the clinical outcomes of this new method and to compare it with single-row suture. METHODS: Seventy-eight patients receiving key point double-row suture or single-row suture from October 2010 to June 2014 were collected retrospectively. The basic information including gender, age, dominant arm, and number of episodes of instability was collected. Before surgery, the glenoid bone loss was measured from the CT scan. The visual analogue scale, American shoulder and elbow surgeons, the University of California at Los Angeles shoulder scale, and subjective shoulder value were valued before surgery and at the last follow-up. RESULTS: Forty-four patients (24 patients receiving single-row suture and 20 patients receiving key point double-row suture) were followed up successfully. The follow-up period was 9.2 ± 1.1 years (range, 7.8-11.4 years). At the last follow-up, no significant differences were detected for any of the clinical scores. The recurrence rate was 12.5% for the single-row group and 10% for the double-row group, respectively (p = 0.795) 14 patients (31.8%) in the single-row group and nine patients (26.5%) in the double-row group were tested for active range of motion. A statistically significant difference was found only for the internal rotation at 90° abduction (48.9° for single-row and 76.7° for key point double-row, p = 0.033). CONCLUSION: The key point double-row sutures for Bankart lesions could achieve similar long-term outcomes compared with single-row suture, and one medial anchor did not result in a limited range of motion. The low recurrence rate and previous biomechanical results also indicate the key point double-row suture is a reliable method.


Subject(s)
Joint Instability , Suture Techniques , Humans , Female , Male , Adult , Retrospective Studies , Case-Control Studies , Joint Instability/surgery , Joint Instability/physiopathology , Bankart Lesions/surgery , Range of Motion, Articular/physiology , Young Adult , Shoulder Joint/surgery , Shoulder Joint/physiopathology , Middle Aged , Adolescent , Suture Anchors , Arthroscopy/methods
11.
Front Physiol ; 15: 1349253, 2024.
Article in English | MEDLINE | ID: mdl-38505709

ABSTRACT

Introduction: Muscle and bone constitute the two main parts of the musculoskeletal system and generate an intricately coordinated motion system. The crosstalk between muscle and bone has been under investigation, leading to revolutionary perspectives in recent years. Method and results: In this review, the evolving concept of muscle-bone interaction from mechanical coupling, secretory crosstalk to stem cell exchange was explained in sequence. The theory of mechanical coupling stems from the observation that the development and maintenance of bone mass are largely dependent on muscle-derived mechanical loads, which was later proved by Wolff's law, Utah paradigm and Mechanostat hypothesis. Then bone and muscle are gradually recognized as endocrine organs, which can secrete various cytokines to modulate the tissue homeostasis and remodeling to each other. The latest view presented muscle-bone interaction in a more direct way: the resident mesenchymal stromal cell in the skeletal muscle, i.e., fibro-adipogenic progenitors (FAPs), could migrate to the bone injury site and contribute to bone regeneration. Emerging evidence even reveals the ectopic source of FAPs from tissue outside the musculoskeletal system, highlighting its dynamic property. Conclusion: FAPs have been established as the critical cell connecting muscle and bone, which provides a new modality to study inter-tissue communication. A comprehensive and integrated perspective of muscle and bone will facilitate in-depth research in the musculoskeletal system and promote novel therapeutic avenues in treating musculoskeletal disorders.

12.
Neural Regen Res ; 19(10): 2157-2174, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488550

ABSTRACT

Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.

13.
Natl Sci Rev ; 11(3): nwad314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312384

ABSTRACT

Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.

14.
Sci Total Environ ; 920: 170894, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367736

ABSTRACT

Polypropylene microplastics (PP-MPs) are emerging environmental contaminants that have the potential to cause adverse effects on aquatic organisms. Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) is a valuable tool for assessing the gene expression profiles under PP-MPs stress. To obtain an accurate gene expression profile of tissue inflammation and apoptosis that reflects the molecular mechanisms underlying the impact of PP-MPs on Chinese sturgeon, identifying reliable reference genes is crucial for RT-qPCR analysis. In this study, we constructed an experiment model of Chinese sturgeon exposed to PP-MPs, assessed the pathological injury, metabolic profile responses and oxidative stress in liver, evaluated the reliability of 8 reliable reference genes by 4 commonly used algorithms including GeNorm, NormFinder, BeatKeeper, Delta Ct, and then analyzed the performance of inflammatory response genes in liver, spleen and kidney with the best reference gene. HE staining revealed that the cytoplasm full small vacuoles and nucleus diameter increased were occurred in the liver cell of PP-MPs in treatment groups. Additionally, oxidative and biochemical parameters were significantly changes in the liver of treatment groups. For the reference genes in PP-MPs exposure experiments, this study screening the optimal reference genes including: EF1α and GAPDH for liver and spleen, and GAPDH and RPS18 for kidney. Besides, 2 inflammatory response genes (NLRP3, TNF-α) were chosen to assess the optimal reference genes using the least stable reference gene (TUB) as a control, verified the practicality of the select reference genes in different tissues. We also found that the low concentration of PP-MPs could induce the liver tissue damage and inflammatory response in Chinese sturgeon. Our study initially evaluated the impact of short-time exposure with PP-MPs in Chinese sturgeon and provided 3 sets of validated optimal reference genes in Chinese sturgeon exposure to PP-MPs.


Subject(s)
Microplastics , Plastics , Animals , Polypropylenes/toxicity , Reproducibility of Results , Fishes , Real-Time Polymerase Chain Reaction
15.
Int J Legal Med ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38332350

ABSTRACT

Bone age assessment (BAA) is crucial in various fields, including legal proceedings, athletic competitions, and clinical medicine. However, the use of X-ray methods for age estimation without medical indication is subject to ethical debate, especially in forensic and athletic fields. The application of magnetic resonance imaging (MRI) with non-ionizing radiation can overcome this limitation in BAA. This study aimed to compare the application value of several MRI modalities of proximal humeral in BAA. A total of 468 patients with shoulder MRIs were retrospectively collected from a Chinese Han population aged 12-30 years (259 males and 209 females) for training and testing, including T1 weighted MRI (T1WI), T2 weighted MRI (T2WI), and Proton density weighted MRI (PDWI). Optimal regression models were established for age estimation, yielding mean absolute error (MAE) values below 2.0 years. The MAE values of T1WI were the lowest, with 1.700 years in males and 1.798 years in females. The area under the curve (AUC) and accuracy values of different MRI modalities of 16-year and 18-year thresholds were all around 0.9. For the 18-year threshold, T1WI outperformed T2WI and PDWI. In conclusion, the three MRI modalities of the proximal humerus can serve as reliable indicators for age assessment, while the T1WI performed better in age assessment and classification.

16.
Cell Prolif ; : e13610, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356342

ABSTRACT

Orofacial muscle defect due to congenital anomalies, tumour ablation or traumatic accident that exceeds endogenous regeneration capacity may lead to sustained deficits in masticatory function and nutrition intake. Functional recovery has always been the goal of muscle tissue repair, but currently, there is no suitable model for quantitative analyses of either functional consequences or treatment efficacy of orofacial muscle defect. This study proposed a critical size volumetric muscle loss (VML) model in mouse masseter with impaired mastication on nutrition. Full-thickness VML defects in diameter of 1.0, 1.5, 2.0 and 3.0 mm were generated in the centre of the mouse masseter using a biopsy punch to determine the critical size for functional impairment. In the VML region, myogenesis was dampened but fibrogenesis was activated, as long with a reduction in the density of the neuromuscular junction and an increase in vascular density. Accordingly, persistent fibrosis was observed in the centre region of VML in all diameters. The 2.0 mm diameter was the critical threshold to masticatory function impairment after VML in the masseter. VML of 3.0 mm diameter led to a significant impact on nutrition intake and body weight gain. Autologous muscle graft effectively relieved the fibrosis and functional deficit after VML injury in the masseter. This model serves as a reliable tool in studying functional recovery strategies for orofacial muscle defects.

17.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
18.
Int J Hyg Environ Health ; 257: 114342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401403

ABSTRACT

Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 µg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.


Subject(s)
Arsenic , Arsenicals , Non-alcoholic Fatty Liver Disease , Humans , Arsenic/analysis , Non-alcoholic Fatty Liver Disease/epidemiology , Case-Control Studies , Environmental Exposure , Arsenicals/urine , Cacodylic Acid/urine
19.
Plants (Basel) ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337976

ABSTRACT

Although hydrogen gas (H2)-treated soil improves crop biomass, this approach appears difficult for field application due to the flammability of H2 gas. In this report, we investigated whether and how H2 applied in hydrogen nanobubble water (HNW) improves the yield and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) with and without fertilizers. Two-year-long field trials showed that compared to corresponding controls, HNW without and with fertilizers improved the cherry tomato yield per plant by 39.7% and 26.5% in 2021 (Shanghai), respectively, and by 39.4% and 28.2% in 2023 (Nanjing), respectively. Compared to surface water (SW), HNW increased the soil available nitrogen (N), phosphorus (P), and potassium (K) consumption regardless of fertilizer application, which may be attributed to the increased NPK transport-related genes in roots (LeAMT2, LePT2, LePT5, and SlHKT1,1). Furthermore, HNW-irrigated cherry tomatoes displayed a higher sugar-acid ratio (8.6%) and lycopene content (22.3%) than SW-irrigated plants without fertilizers. Importantly, the beneficial effects of HNW without fertilizers on the yield per plant (9.1%), sugar-acid ratio (31.1%), and volatiles (20.0%) and lycopene contents (54.3%) were stronger than those achieved using fertilizers alone. In short, this study clearly indicated that HNW-supplied H2 not only exhibited a fertilization effect on enhancing the tomato yield, but also improved the fruit's quality with a lower carbon footprint.

20.
Nat Neurosci ; 27(2): 272-285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172439

ABSTRACT

The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.


Subject(s)
Neuralgia , Ventral Tegmental Area , Mice , Animals , Gyrus Cinguli , Hyperalgesia , Feedback , Dopaminergic Neurons/physiology , gamma-Aminobutyric Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...