Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Serious Games ; 10(3): e38284, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36112407

ABSTRACT

BACKGROUND: Social anxiety disorder (SAD) is the fear of social situations where a person anticipates being evaluated negatively. Changes in autonomic response patterns are related to the expression of anxiety symptoms. Virtual reality (VR) sickness can inhibit VR experiences. OBJECTIVE: This study aimed to predict the severity of specific anxiety symptoms and VR sickness in patients with SAD, using machine learning based on in situ autonomic physiological signals (heart rate and galvanic skin response) during VR treatment sessions. METHODS: This study included 32 participants with SAD taking part in 6 VR sessions. During each VR session, the heart rate and galvanic skin response of all participants were measured in real time. We assessed specific anxiety symptoms using the Internalized Shame Scale (ISS) and the Post-Event Rumination Scale (PERS), and VR sickness using the Simulator Sickness Questionnaire (SSQ) during 4 VR sessions (#1, #2, #4, and #6). Logistic regression, random forest, and naïve Bayes classification classified and predicted the severity groups in the ISS, PERS, and SSQ subdomains based on in situ autonomic physiological signal data. RESULTS: The severity of SAD was predicted with 3 machine learning models. According to the F1 score, the highest prediction performance among each domain for severity was determined. The F1 score of the ISS mistake anxiety subdomain was 0.8421 using the logistic regression model, that of the PERS positive subdomain was 0.7619 using the naïve Bayes classifier, and that of total VR sickness was 0.7059 using the random forest model. CONCLUSIONS: This study could predict specific anxiety symptoms and VR sickness during VR intervention by autonomic physiological signals alone in real time. Machine learning models can predict the severe and nonsevere psychological states of individuals based on in situ physiological signal data during VR interventions for real-time interactive services. These models can support the diagnosis of specific anxiety symptoms and VR sickness with minimal participant bias. TRIAL REGISTRATION: Clinical Research Information Service KCT0003854; https://cris.nih.go.kr/cris/search/detailSearch.do/13508.

2.
Article in English | MEDLINE | ID: mdl-30011934

ABSTRACT

Kidney exchange programs, which allow a potential living donor whose kidney is incompatible with his or her intended recipient to donate a kidney to another patient in return for a kidney that is compatible for their intended recipient, usually aims to maximize the number of possible kidney exchanges or the total utility of the program. However, the fairness of these exchanges is an issue that has often been ignored. In this paper, as a way to overcome the problems arising in previous studies, we take fairness to be the degree to which individual patient-donor pairs feel satisfied, rather than the extent to which the exchange increases social benefits. A kidney exchange has to occur on the basis of the value of the kidneys themselves because the process is similar to bartering. If the matched kidneys are not of the level expected by the patient-donor pairs involved, the match may break and the kidney exchange transplantation may fail. This study attempts to classify possible scenarios for such failures and incorporate these into a stochastic programming framework. We apply a two-stage stochastic programming method using total utility in the first stage and the sum of the penalties for failure in the second stage when an exceptional event occurs. Computational results are provided to demonstrate the improvement of the proposed model compared to that of previous deterministic models.


Subject(s)
Kidney Transplantation , Living Donors/supply & distribution , Models, Statistical , Tissue and Organ Procurement/methods , Blood Group Incompatibility , Health Care Rationing , Humans , Living Donors/psychology , Stochastic Processes , Tissue and Organ Procurement/statistics & numerical data
3.
PLoS One ; 13(3): e0194043, 2018.
Article in English | MEDLINE | ID: mdl-29547625

ABSTRACT

In this paper, we examine a real-world case related to the consumer product supply chain to analyze the value of supply chain coordination under the condition of moral hazard. Because of the characteristics of a buyback contract scheme employed in the supply chain, the supplier company's sales department encourages retailers to order more inventory to meet their sales target, whereas retailers pay less attention to their inventory level and leftovers at the end of the season. This condition induces moral hazard problems in the operation of the supply chain, as suppliers suffer from huge returns of leftover inventory. This, in turn, is related to the obsolescence of returned inventory, even with penalty terms in the contract for the return of any leftovers. In this study, we show under the current buyback-based supply chain operation, the inventory levels of both the supplier and retailers exceed customer demand and develop vendor-managed inventory (VMI) system with base stock policy to remove any mismatch of supply and demand. A comparison of both systems shows that through the proper coordination of supply chain operations, both suppliers and retailers can gain additional benefits while providing proper services to end customers.


Subject(s)
Commerce/economics , Equipment and Supplies/economics , Humans , Morals
SELECTION OF CITATIONS
SEARCH DETAIL