Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Nat Prod ; 86(4): 1010-1018, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37043719

ABSTRACT

Three new benzo[b]naphtho[2,1-d]furans, usambarins A-C (1-3), five new 2-phenylnaphthalenes, usambarins D-H (4-8), a new flavan (9), and a new phenyl-1-benzoxepin (10) as well as two known compounds (11 and 12) were isolated from the extract of the stem and roots of Streblus usambarensis (Moraceae). The structures were deduced using NMR spectroscopic and mass spectrometric analyses, and those of compounds 1 and 4 were confirmed by X-ray crystallography. Usambarin D (4) demonstrated moderate antibacterial activity (MIC 9.0 µM) against Bacillus subtilis, while none of the tested compounds were effective against Escherichia coli.


Subject(s)
Furans , Moraceae , Furans/pharmacology , Furans/chemistry , Anti-Bacterial Agents/chemistry , Plant Roots , Moraceae/chemistry , Molecular Structure , Microbial Sensitivity Tests
2.
Fitoterapia ; 158: 105166, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35219716

ABSTRACT

The CH2Cl2/MeOH (1:1) extract of the stems of Tephrosia uniflora yielded the new ß-hydroxydihydrochalcone (S)-elatadihydrochalcone-2'-methyl ether (1) along with the three known compounds elongatin (2), (S)-elatadihydrochalcone (3), and tephrosin (4). The structures were elucidated by NMR spectroscopic and mass spectrometric data analyses. Elongatin (2) showed moderate antibacterial activity (EC50 of 25.3 µM and EC90 of 32.8 µM) against the Gram-positive bacterium Bacilus subtilis, and comparable toxicity against the MCF-7 human breast cancer cell line (EC50 of 41.3 µM). Based on the comparison of literature and predicted NMR data with that obtained experimentally, we propose the revision of the structures of three ß-hydroxydihydrochalcones to flavanones.


Subject(s)
Flavanones , Tephrosia , Flavanones/chemistry , Flavanones/pharmacology , Gram-Positive Bacteria , Humans , Molecular Structure , Plant Extracts/chemistry , Tephrosia/chemistry
3.
Fitoterapia ; 149: 104796, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33271256

ABSTRACT

Five known compounds (1-5) were isolated from the extract of Mundulea sericea leaves. Similar investigation of the roots of this plant afforded an additional three known compounds (6-8). The structures were elucidated using NMR spectroscopic and mass spectrometric analyses. The absolute configuration of 1 was established using ECD spectroscopy. In an antiplasmodial activity assay, compound 1 showed good activity with an IC50 of 2.0 µM against chloroquine-resistant W2, and 6.6 µM against the chloroquine-sensitive 3D7 strains of Plasmodium falciparum. Some of the compounds were also tested for antileishmanial activity. Dehydrolupinifolinol (2) and sericetin (5) were active against drug-sensitive Leishmania donovani (MHOM/IN/83/AG83) with IC50 values of 9.0 and 5.0 µM, respectively. In a cytotoxicity assay, lupinifolin (3) showed significant activity on BEAS-2B (IC50 4.9 µM) and HePG2 (IC50 10.8 µM) human cell lines. All the other compounds showed low cytotoxicity (IC50 > 30 µM) against human lung adenocarcinoma cells (A549), human liver cancer cells (HepG2), lung/bronchus cells (epithelial virus transformed) (BEAS-2B) and immortal human hepatocytes (LO2).


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Fabaceae/chemistry , Antimalarials/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Antiprotozoal Agents/isolation & purification , Cell Line, Tumor , Flavonoids , Humans , Kenya , Molecular Structure , Nitric Oxide/metabolism , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Plasmodium falciparum/drug effects
4.
Acta Trop ; 123(2): 123-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22575309

ABSTRACT

The acetone extract of the root bark of Erythrina burttii showed in vitro antiplasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC(50) values of 0.97 ± 0.2 and 1.73 ± 0.5 µg/ml respectively. The extract also had radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with an EC(50) value of 12.0 µg/ml. The isoflav-3-enes burttinol-A and burttinol-C, and the 2-arylbenzofuran derivative burttinol-D were identified as the most active antiplasmodial (IC(50)<10 µM) and free radical scavenging (EC(50)ca. 10 µM) principles. The acetone extract of E. burttii at 800 mg/kg/day, in a 4-day Plasmodium berghei ANKA suppressive test, showed in vivo antimalarial activity with 52% chemosuppression. In the same in vivo test, marginal activities were also observed for the extracts of the root and stem bark of Erythrina abyssinica and the root bark of Erythrina sacleuxii.


Subject(s)
Antimalarials/pharmacology , Erythrina/chemistry , Flavonoids/pharmacology , Free Radical Scavengers/pharmacology , Malaria/drug therapy , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Flavonoids/chemistry , Free Radical Scavengers/chemistry , Humans , Malaria/parasitology , Male , Mice , Parasitic Sensitivity Tests , Phytotherapy , Plant Extracts , Plant Roots/chemistry , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL