Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 378(2162): 20190107, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31760907

ABSTRACT

The paper describes a fault-tolerant design of a special two-dimensional beam lattice. The morphology of such lattices was suggested in the theoretical papers (Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89, 485-501; Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89, 503-519), where its superior properties were found numerically. The proposed design consists of beam elements with two different thicknesses; the lattice is macro-isotropic and stretch dominated. Here, we experimentally verify the fault-tolerant properties of these lattices. The specimens were three-dimensional-printed from the VeroWhite elastoplastic material. The lattice is subjected to uniaxial tensile loading. Due to its morphology, the failed beams are evenly distributed in the lattice at the initial stage of damage; at this stage, the material remains intact, preserves its bearing ability, and supports relatively high strains before the final failure. At the initial phase of damage, the thinner beams buckle; then another group of separated thin beams plastically yield and rupture. The fatal macro-crack propagates after the distributed damage reaches a critical level. This initial distributed damage stage allows for a better energy absorption rate before the catastrophic failure of the structure. The experimental results are supported by simulations which confirm that the proposed fault-tolerant material possesses excellent energy absorption properties thanks to the distributed damage stage phenomenon. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.

2.
PLoS One ; 14(4): e0215836, 2019.
Article in English | MEDLINE | ID: mdl-31034477

ABSTRACT

We consider the variational foam model, where the goal is to minimize the total surface area of a collection of bubbles subject to the constraint that the volume of each bubble is prescribed. We apply sharp interface methods to develop an efficient computational method for this problem. In addition to simulating time dynamics, we also report on stationary states of this flow for ≤ 21 bubbles in two dimensions and ≤ 17 bubbles in three dimensions. For small numbers of bubbles, we recover known analytical results, which we briefly discuss. In two dimensions, we also recover previous numerical results, computed using other methods. Particular attention is given to locally optimal foam configurations and heterogeneous foams, where the volumes of the bubbles are not equal. Configurational transitions are reported for the quasi-stationary flow where the volume of one of the bubbles is varied and, for each volume, the stationary state is computed. The results from these numerical experiments are described and accompanied by many figures and videos.


Subject(s)
Models, Theoretical , Algorithms , Numerical Analysis, Computer-Assisted , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...