Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Epidemiol Biomarkers Prev ; 33(4): 557-566, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38294689

ABSTRACT

BACKGROUND: American men of African ancestry (AA) have higher prostate cancer incidence and mortality rates compared with American men of European ancestry (EA). Differences in genetic susceptibility mechanisms may contribute to this disparity. METHODS: To gain insights into the regulatory mechanisms of prostate cancer susceptibility variants, we tested the association between SNPs and DNA methylation (DNAm) at nearby CpG sites across the genome in benign and cancer prostate tissue from 74 AA and 74 EA men. Genome-wide SNP data (from benign tissue) and DNAm were generated using Illumina arrays. RESULTS: Among AA men, we identified 6,298 and 2,641 cis-methylation QTLs (meQTL; FDR of 0.05) in benign and tumor tissue, respectively, with 6,960 and 1,700 detected in EA men. We leveraged genome-wide association study (GWAS) summary statistics to identify previously reported prostate cancer GWAS signals likely to share a common causal variant with a detected meQTL. We identified nine GWAS-meQTL pairs with strong evidence of colocalization (four in EA benign, three in EA tumor, two in AA benign, and three in AA tumor). Among these colocalized GWAS-meQTL pairs, we identified colocalizing expression quantitative trait loci (eQTL) impacting four eGenes with known roles in tumorigenesis. CONCLUSIONS: These findings highlight epigenetic regulatory mechanisms by which prostate cancer-risk SNPs can modify local DNAm and/or gene expression in prostate tissue. IMPACT: Overall, our findings showed general consistency in the meQTL landscape of AA and EA men, but meQTLs often differ by tissue type (normal vs. cancer). Ancestry-based linkage disequilibrium differences and lack of AA representation in GWAS decrease statistical power to detect colocalization for some regions.


Subject(s)
DNA Methylation , Prostatic Neoplasms , Male , Humans , Black or African American/genetics , Genome-Wide Association Study , Prostatic Neoplasms/epidemiology , Genetic Variation , Polymorphism, Single Nucleotide
2.
PLoS Genet ; 19(1): e1010588, 2023 01.
Article in English | MEDLINE | ID: mdl-36668670

ABSTRACT

Inorganic arsenic is highly toxic and carcinogenic to humans. Exposed individuals vary in their ability to metabolize arsenic, and variability in arsenic metabolism efficiency (AME) is associated with risks of arsenic-related toxicities. Inherited genetic variation in the 10q24.32 region, near the arsenic methyltransferase (AS3MT) gene, is associated with urine-based measures of AME in multiple arsenic-exposed populations. To identify potential causal variants in this region, we applied fine mapping approaches to targeted sequencing data generated for exposed individuals from Bangladeshi, American Indian, and European American populations (n = 2,357, 557, and 648 respectively). We identified three independent association signals for Bangladeshis, two for American Indians, and one for European Americans. The size of the confidence sets for each signal varied from 4 to 85 variants. There was one signal shared across all three populations, represented by the same SNP in American Indians and European Americans (rs191177668) and in strong linkage disequilibrium (LD) with a lead SNP in Bangladesh (rs145537350). Beyond this shared signal, differences in LD patterns, minor allele frequency (MAF) (e.g., rs12573221 ~13% in Bangladesh ~0.2% among American Indians), and/or heterogeneity in effect sizes across populations likely contributed to the apparent population specificity of the additional identified signals. One of our potential causal variants influences AS3MT expression and nearby DNA methylation in numerous GTEx tissue types (with rs4919690 as a likely causal variant). Several SNPs in our confidence sets overlap transcription factor binding sites and cis-regulatory elements (from ENCODE). Taken together, our analyses reveal multiple potential causal variants in the 10q24.32 region influencing AME, including a variant shared across populations, and elucidate potential biological mechanisms underlying the impact of genetic variation on AME.


Subject(s)
Arsenic Poisoning , Arsenic , Arsenicals , Humans , Arsenic/toxicity , Arsenic/metabolism , Arsenic Poisoning/genetics , Arsenicals/metabolism , DNA Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Polymorphism, Single Nucleotide/genetics , Chromosomes, Human, Pair 10
3.
Nat Genet ; 55(1): 112-122, 2023 01.
Article in English | MEDLINE | ID: mdl-36510025

ABSTRACT

Studies of DNA methylation (DNAm) in solid human tissues are relatively scarce; tissue-specific characterization of DNAm is needed to understand its role in gene regulation and its relevance to complex traits. We generated array-based DNAm profiles for 987 human samples from the Genotype-Tissue Expression (GTEx) project, representing 9 tissue types and 424 subjects. We characterized methylome and transcriptome correlations (eQTMs), genetic regulation in cis (mQTLs and eQTLs) across tissues and e/mQTLs links to complex traits. We identified mQTLs for 286,152 CpG sites, many of which (>5%) show tissue specificity, and mQTL colocalizations with 2,254 distinct GWAS hits across 83 traits. For 91% of these loci, a candidate gene link was identified by integration of functional maps, including eQTMs, and/or eQTL colocalization, but only 33% of loci involved an eQTL and mQTL present in the same tissue type. With this DNAm-focused integrative analysis, we contribute to the understanding of molecular regulatory mechanisms in human tissues and their impact on complex traits.


Subject(s)
DNA Methylation , Quantitative Trait Loci , Humans , DNA Methylation/genetics , Quantitative Trait Loci/genetics , Multifactorial Inheritance , Chromosome Mapping , Genetic Variation/genetics , Genome-Wide Association Study
5.
Environ Health Perspect ; 129(4): 47007, 2021 04.
Article in English | MEDLINE | ID: mdl-33826413

ABSTRACT

BACKGROUND: Common genetic variation in the arsenic methyltransferase (AS3MT) gene region is known to be associated with arsenic metabolism efficiency (AME), measured as the percentage of dimethylarsinic acid (DMA%) in the urine. Rare, protein-altering variants in AS3MT could have even larger effects on AME, but their contribution to AME has not been investigated. OBJECTIVES: We estimated the impact of rare, protein-coding variation in AS3MT on AME using a multi-population approach to facilitate the discovery of population-specific and shared causal rare variants. METHODS: We generated targeted DNA sequencing data for the coding regions of AS3MT for three arsenic-exposed cohorts with existing data on arsenic species measured in urine: Health Effects of Arsenic Longitudinal Study (HEALS, n=2,434), Strong Heart Study (SHS, n=868), and New Hampshire Skin Cancer Study (NHSCS, n=666). We assessed the collective effects of rare (allele frequency <1%), protein-altering AS3MT variants on DMA%, using multiple approaches, including a test of the association between rare allele carrier status (yes/no) and DMA% using linear regression (adjusted for common variants in 10q24.32 region, age, sex, and population structure). RESULTS: We identified 23 carriers of rare-protein-altering AS3MT variant across all cohorts (13 in HEALS and 5 in both SHS and NHSCS), including 6 carriers of predicted loss-of-function variants. DMA% was 6-10% lower in carriers compared with noncarriers in HEALS [ß=-9.4 (95% CI: -13.9, -4.8)], SHS [ß=-6.9 (95% CI: -13.6, -0.2)], and NHSCS [ß=-8.7 (95% CI: -15.6, -2.2)]. In meta-analyses across cohorts, DMA% was 8.7% lower in carriers [ß=-8.7 (95% CI: -11.9, -5.4)]. DISCUSSION: Rare, protein-altering variants in AS3MT were associated with lower mean DMA%, an indicator of reduced AME. Although a small percentage of the population (0.5-0.7%) carry these variants, they are associated with a 6-10% decrease in DMA% that is consistent across multiple ancestral and environmental backgrounds. https://doi.org/10.1289/EHP8152.


Subject(s)
Arsenic , Cacodylic Acid , Longitudinal Studies , Methyltransferases/genetics , Polymorphism, Single Nucleotide
6.
Science ; 369(6509)2020 09 11.
Article in English | MEDLINE | ID: mdl-32913074

ABSTRACT

Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied extensively as a biomarker of human aging and disease; however, little is known regarding variability in TL in nonblood, disease-relevant tissue types. Here, we characterize variability in TLs from 6391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue Expression (GTEx) project. We describe differences across tissue types, positive correlation among tissue types, and associations with age and ancestry. We show that genetic variation affects TL in multiple tissue types and that TL may mediate the effect of age on gene expression. Our results provide the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological studies of TL and human health.


Subject(s)
Aging/genetics , Telomere Homeostasis/genetics , Telomere Shortening/genetics , Telomere/physiology , Genetic Markers , Genetic Variation , Humans , Organ Specificity
7.
Toxicol Sci ; 176(2): 382-395, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32433756

ABSTRACT

Approximately 140 million people worldwide are exposed to inorganic arsenic through contaminated drinking water. Chronic exposure increases risk for cancers as well as cardiovascular, respiratory, and neurologic diseases. Arsenic metabolism involves the AS3MT (arsenic methyltransferase) gene, and arsenic metabolism efficiency (AME, measured as relative concentrations of arsenic metabolites in urine) varies among individuals. Inherited genetic variation in the 10q24.32 region, containing AS3MT, influences AME, but the mechanisms remain unclear. To better understand these mechanisms, we use tissue-specific expression data from GTEx (Genotype-tissue Expression project) to identify cis-eQTLs (expression quantitative trait loci) for AS3MT and other nearby genes. We combined these data with results from a genome-wide association study of AME using "colocalization analysis," to determine if 10q24.32 SNPs (single nucleotide polymorphisms) that affect AME also affect expression of AS3MT or nearby genes. These analyses identified cis-eQTLs for AS3MT in 38 tissue types. Colocalization results suggest that the casual variant represented by AME lead SNP rs4919690 impacts expression of AS3MT in 13 tissue types (> 80% probability). Our results suggest this causal SNP also regulates/coregulates expression of nearby genes: BORCS7 (43 tissues), NT5C2 (2 tissues), CYP17A1-AS1 (1 tissue), and RP11-724N1.1 (1 tissue). The rs4919690 allele associated with decreased AME is associated with decreased expression of AS3MT (and other coregulated genes). Our study provides a potential biological mechanism for the association between 10q24.32 variation and AME and suggests that the causal variant, represented by rs4919690, may impact AME (as measured in urine) through its effects on arsenic metabolism occurring in multiple tissue types.


Subject(s)
Arsenic , Methyltransferases , Alleles , Arsenic/metabolism , Genome-Wide Association Study , Humans , Methyltransferases/genetics , Polymorphism, Single Nucleotide
8.
Matern Child Nutr ; 12(4): 790-800, 2016 10.
Article in English | MEDLINE | ID: mdl-26446289

ABSTRACT

Prior studies have reported a significant, inverse association between adiponectin in human milk and offspring growth velocity. Less is known about this association in populations characterised by a loss of weight for age z-scores (WAZs) in early life. We investigated the association between maternal body composition and milk adiponectin in a sample of Filipino mothers. We then tested for an association between milk adiponectin and size for age in their infants. A total of 117 Filipino mothers nursing infants from 0 to 24 months were recruited from Cebu, Philippines. Anthropometrics, interviews and milk samples were collected and analysed using standard protocols. Mean milk adiponectin in this sample was 7.47 ± 5.75 ng mL(-1) . Mean infant WAZ and weight for length (WLZ) decreased with age. Maternal body composition was not associated with milk adiponectin content. Milk adiponectin had a significant, positive association with infant WAZ and WLZ. Prior reports have found an inverse association between milk adiponectin and infant WAZ. Here, we report that in lean populations with lower milk adiponectin, there is a positive association with infant WAZ, possibly reflecting pleiotropic biological functions of adiponectin for post-natal growth. This study increases the understanding of normal biological variation in milk adiponectin and the consequences of low levels of milk adiponectin for offspring growth.


Subject(s)
Adiponectin/analysis , Asian People , Body Weight , Milk, Human/chemistry , Adult , Body Composition , Body Mass Index , Breast Feeding , Child Development , Child, Preschool , Diet , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Linear Models , Male , Mothers , Multivariate Analysis , Philippines , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...