Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172192, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38604363

ABSTRACT

Quantifying pollutant removal by stormwater wetlands requires intensive sampling which is cost-prohibitive for authorities responsible for a large number of wetlands. Wetland managers require simple indicators that provide a practical means of estimating performance and prioritising maintenance works across their asset base. We therefore aimed to develop vegetation cover and metrics derived from monitoring water level, as simple indicators of likely nutrient pollutant removal from stormwater wetlands. Over a two-year period, we measured vegetation cover and water levels at 17 wetlands and used both to predict nitrogen (N) and phosphorus (P) removal. Vegetation cover explained 48 % of variation in total nitrogen (TN) removal; with a linear relationship suggesting an approximate 9 % loss in TN removal per 10 % decrease in vegetation cover. Vegetation cover is therefore a useful indicator of TN removal. Further development of remotely-sensed data on vegetation configuration, species and condition will likely improve the accuracy of TN removal estimates. Total phosphorus (TP) removal was not predicted by vegetation cover, but was weakly related to the median water level which explained 25 % of variation TP removal. Despite weak prediction of TP removal, metrics derived from water level sensors identified faults such as excessive inflow and inefficient outflow, which in combination explained 50 % of the variation in the median water level. Monitoring water levels therefore has the potential to detect faults prior to loss of vegetation cover and therefore TN removal, as well as inform the corrective action required.

2.
Water Res X ; 22: 100212, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38327899

ABSTRACT

Sound urban water management relies on extensive and reliable monitoring of water infrastructure. As low-cost sensors and networks have become increasingly available for environmental monitoring, urban water researchers and practitioners must consider the benefits and disadvantages of such technologies. In this perspective paper, we highlight six technical and socio-technological considerations for low-cost monitoring technology to reach its full potential in the field of urban water management, including: technical barriers to implementation, complementarity with traditional sensing technologies, low-cost sensor reliability, added value of produced information, opportunities to democratize data collection, and economic and environmental costs of the technology. For each consideration, we present recent experiences from our own work and broader literature and identify future research needs to address current challenges. Our experience supports the strong potential of low-cost monitoring technology, in particular that it promotes extensive and innovative monitoring of urban water infrastructure. Future efforts should focus on more systematic documenting of experiences to lower barriers to designing, implementing, and testing of low-cost sensor networks, and on assessing the economic, social, and environmental costs and benefits of low-cost sensor deployments.

3.
Water Sci Technol ; 87(11): 2648-2684, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37318917

ABSTRACT

The large-scale deployment of low-cost monitoring systems has the potential to revolutionize the field of urban hydrology monitoring, bringing improved urban management, and a better living environment. Even though low-cost sensors emerged a few decades ago, versatile and cheap electronics like Arduino could give stormwater researchers a new opportunity to build their own monitoring systems to support their work. To find out sensors which are ready for low-cost stormwater monitoring systems, for the first time, we review the performance assessments of low-cost sensors for monitoring air humidity, wind speed, solar radiation, rainfall, water level, water flow, soil moisture, water pH, conductivity, turbidity, nitrogen, and phosphorus in a unified metrological framework considering numerous parameters. In general, as these low-cost sensors are not initially designed for scientific monitoring, there is extra work to make them suitable for in situ monitoring, to calibrate them, to validate their performance, and to connect them with open-source hardware for data transmission. We, therefore, call for international cooperation to develop uniform low-cost sensor production, interface, performance, calibration and system design, installation, and data validation guides which will greatly regulate and facilitate the sharing of experience and knowledge.


Subject(s)
Environmental Monitoring , Soil , Water , Calibration , Hydrology
4.
Sci Total Environ ; 514: 418-25, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25682359

ABSTRACT

Flood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour. According to the literature, causes of blockages vary widely from one case to another: it is impossible to provide utility managers with effective recommendations on how to improve the level of protection. It is therefore vital to analyse each context in order to define an appropriate strategy. Here we propose a method to represent and assess the flooding risk, using GIS and data gathered during operation and maintenance. Our method also identifies potential management responses. The approach proposed aims to provide decision makers with clear and comprehensible information. Our method has been successfully applied to the Urban Community of Bordeaux (France) on 4895 interventions related to flooding recorded during the 2009-2011 period. Results have shown the relative importance of different issues, such as human behaviour (grease, etc.) or operational deficiencies (roots, etc.), and lead to identify corrective and proactive. This study also confirms that blockages are not always directly due to the network itself and its deterioration. Many causes depend on environmental and operating conditions on the network and often require collaboration between municipal departments in charge of roads, green spaces, etc.

5.
J Environ Manage ; 101: 46-53, 2012 Jun 30.
Article in English | MEDLINE | ID: mdl-22387329

ABSTRACT

This paper aims to develop a methodology to support the sustainable management of Urban Drainage Systems (UDSs) in Algeria. This research is motivated by the various difficulties that the National Sanitation Office (ONA) has in managing this complex infrastructure. The method mainly consists of two approaches: the top-down approach and the bottom-up approach. The former facilitates the identification of factors related to a sustainable UDS, the development priorities and the criteria available to managers. The latter assesses UDS performance using the weighted sum method to aggregate indicators or criteria weighted using the Analytical Hierarchy Process (AHP). The method is demonstrated through its application to the UDS in the city of Jijel, Algeria.


Subject(s)
Decision Support Techniques , Waste Disposal, Fluid/methods , Agricultural Irrigation , Algeria , Cities , Conservation of Natural Resources , Eutrophication , Sanitary Engineering/methods , Waste Disposal, Fluid/instrumentation , Water Pollution
6.
Water Sci Technol ; 64(4): 832-40, 2011.
Article in English | MEDLINE | ID: mdl-22097068

ABSTRACT

Sustainable water management is a global challenge for the 21st century. One key aspect remains protection against urban flooding. The main objective is to ensure or maintain an adequate level of service for all inhabitants. However, level of service is still difficult to assess and the high-risk locations difficult to identify. In this article, we propose a methodology, which (i) allows water managers to measure the service provided by the urban drainage system with regard to protection against urban flooding; and (ii) helps stakeholders to determine effective strategies for improving the service provided. One key aspect of this work is to use a database of sewer flood event records to assess flood risk. Our methodology helps urban water managers to assess the risk of sewer flooding; this approach does not seek to predict flooding but rather to inform decision makers on the current level of risk and on actions which need to be taken to reduce the risk. This work is based on a comprehensive definition of risk, including territorial vulnerability and perceptions of urban water stakeholders. This paper presents the results and the methodological contributions from implementing the methodology on two case studies: the cities of Lyon and Mulhouse.


Subject(s)
Database Management Systems , Floods , Probability , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...