Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 261: 115821, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37776573

ABSTRACT

Reported here are the synthesis and in vitro evaluation of a series of 26 retinoic acid analogs based on dihydronaphthalene and chromene scaffolds using a transactivation assay. Chromene amide analog 21 was the most potent and selective retinoic acid receptor α antagonist identified from this series. In vitro evaluation indicated that 21 has favorable physicochemical properties and a favorable pharmacokinetic PK profile in vivo with significant oral bioavailability, metabolic stability, and testes exposure. Compound 21 was evaluated for its effects on spermatogenesis and disruption of fertility in a mouse model. Oral administration of compound 21 at low doses showed reproducibly characteristic albeit modest effects on spermatogenesis, but no effects on fertility were observed in mating studies. The inhibition of spermatogenesis could not be enhanced by raising the dose and lengthening the duration of dosing. Thus, 21 may not be a good candidate to pursue further for effects on male fertility.


Subject(s)
Contraception , Testis , Mice , Animals , Male , Retinoic Acid Receptor alpha/metabolism , Benzopyrans/pharmacology
2.
J Med Chem ; 65(15): 10441-10458, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35867655

ABSTRACT

Bromodomain and extraterminal domain (BET) proteins are important regulators of gene transcription and chromatin remodeling. BET family members BRD4 and BRDT are validated targets for cancer and male contraceptive drug development, respectively. Due to the high structural similarity of the acetyl-lysine binding sites, most reported inhibitors lack intra-BET selectivity. We surmised that protein-protein interactions induced by bivalent inhibitors may differ between BRD4 and BRDT, conferring an altered selectivity profile. Starting from nonselective monovalent inhibitors, we developed cell-active bivalent BET inhibitors with increased activity and selectivity for BRDT. X-ray crystallographic and solution studies revealed unique structural states of BRDT and BRD4 upon interaction with bivalent inhibitors. Varying spacer lengths and symmetric vs unsymmetric connections resulted in the same dimeric states, whereas different chemotypes induced different dimers. The findings indicate that the increased intra-BET selectivity of bivalent inhibitors is due to the differential plasticity of BET bromodomains upon inhibitor-induced dimerization.


Subject(s)
Neoplasms , Nuclear Proteins , Cell Cycle Proteins/metabolism , Humans , Male , Neoplasms/metabolism , Protein Conformation , Protein Domains , Transcription Factors/metabolism
3.
J Pharmacol Exp Ther ; 370(3): 796-805, 2019 09.
Article in English | MEDLINE | ID: mdl-30837282

ABSTRACT

Intranasal administration is an attractive route for systemic delivery of small, lipophilic drugs because they are rapidly absorbed through the nasal mucosa into systemic circulation. However, the low solubility of lipophilic drugs often precludes aqueous nasal spray formulations. A unique approach to circumvent solubility issues involves coadministration of a hydrophilic prodrug with an exogenous converting enzyme. This strategy not only addresses poor solubility but also leads to an increase in the chemical activity gradient driving drug absorption. Herein, we report plasma and brain concentrations in rats following coadministration of a hydrophilic diazepam prodrug, avizafone, with the converting enzyme human aminopeptidase B Single doses of avizafone equivalent to diazepam at 0.500, 1.00, and 1.50 mg/kg were administered intranasally, resulting in 77.8% ± 6.0%, 112% ± 10%, and 114% ± 7% bioavailability; maximum plasma concentrations 71.5 ± 9.3, 388 ± 31, and 355 ± 187 ng/ml; and times to peak plasma concentration 5, 8, and 5 minutes for each dose level, respectively. Both diazepam and a transient intermediate were absorbed. Enzyme kinetics incorporated into a physiologically based pharmacokinetic model enabled estimation of the first-order absorption rate constants: 0.0689 ± 0.0080 minutes-1 for diazepam and 0.122 ± 0.022 minutes-1 for the intermediate. Our results demonstrate that diazepam, which is practically insoluble, can be delivered intranasally with rapid and complete absorption by coadministering avizafone with aminopeptidase B. Furthermore, even faster rates of absorption might be attained simply by increasing the enzyme concentration, potentially supplanting intravenous diazepam or lorazepam or intramuscular midazolam in the treatment of seizure emergencies.


Subject(s)
Anticonvulsants/administration & dosage , Diazepam/administration & dosage , Dipeptides/administration & dosage , Prodrugs/administration & dosage , Administration, Intranasal , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Animals , Anticonvulsants/adverse effects , Anticonvulsants/pharmacokinetics , Biological Availability , Diazepam/pharmacokinetics , Dipeptides/adverse effects , Dipeptides/pharmacokinetics , Drug Compounding , Male , Nasal Cavity/cytology , Nasal Cavity/metabolism , Prodrugs/pharmacokinetics , Rats , Rats, Sprague-Dawley
4.
J Pharm Sci ; 105(8): 2365-71, 2016 08.
Article in English | MEDLINE | ID: mdl-27342435

ABSTRACT

Water-soluble prodrugs can be rapidly converted by enzymes to hydrophobic drugs, whose aqueous thermodynamic solubilities are low, but are maintained in aqueous solution at supersaturated concentrations due to slow precipitation kinetics. Recently, we investigated avizafone (AVF) in combination with Aspergillus oryzae protease as a prodrug/enzyme system intended to produce supersaturated diazepam (DZP). Several fold enhancement of permeation of supersaturated DZP across Madin-Darby canine kidney II-wild type (MDCKII-wt) monolayers was observed, compared to saturated DZP solutions. However, prodrug conversion was incomplete, putatively due to partial racemization of AVF and stereoselectivity of A oryzae protease. Here we report synthesis of chirally pure AVF, and demonstrate complete conversion to supersaturated DZP followed by complete DZP permeation at enhanced rates across MDCKII-wt cell monolayers. We also synthesized, for the first time, a chirally pure prodrug of midazolam (MDZ-pro) and carried out the same sequence of studies. A oryzae protease was identified as a benign and efficient activating enzyme for MDZ-pro. The MDZ-pro/A oryzae protease system showed greater than 25-fold increase in absorption rate of MDZ across MDCKII-wt monolayers, compared to saturated MDZ. Such chirally pure prodrug/enzyme systems are promising candidates for efficient intranasal delivery of benzodiazepine drugs used in the treatment of seizure emergencies.


Subject(s)
Benzodiazepines/metabolism , Peptide Hydrolases/chemistry , Prodrugs/metabolism , Administration, Intranasal , Animals , Aspergillus oryzae/enzymology , Benzodiazepines/chemistry , Cell Membrane Permeability , Dipeptides/metabolism , Dogs , Hydrophobic and Hydrophilic Interactions , Madin Darby Canine Kidney Cells , Midazolam/metabolism , Nasal Mucosa/metabolism , Prodrugs/chemistry , Solubility , Solutions
5.
Epilepsy Behav ; 49: 347-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26115606

ABSTRACT

Benzodiazepines (BZDs), including diazepam (DZP) and midazolam (MDZ), are drugs of choice for rapid treatment of seizure emergencies. Current approved use of these drugs involves administration via either intravenous or rectal routes. The former requires trained medical personnel, while the latter is socially unacceptable for many patients and caregivers. In recent years, efforts have been made to formulate BZDs for nasal administration. Because of the low solubility of these molecules, organic vehicles have been used to solubilize the drugs in the nasal products under development. However, organic solvents are irritating, potentially resulting in injury to nasal tissue. Here we report preliminary studies supporting a strategy in which water-soluble BZD prodrugs and a suitable converting enzyme are coadministered in an aqueous vehicle. Diazepam and midazolam prodrugs were synthesized and were readily converted to their active forms by a protease from Aspergillus oryzae. Using a permeation assay based on monolayers of Madin-Darby canine kidney II-wild type cells, we found that enzymatically produced BZDs could be maintained at high degrees of supersaturation, enabling faster transport across the membrane than can be achieved using saturated solutions. This strategy not only obviates the need for organic solvents, but it also suggests more rapid absorption and earlier peak concentrations than can be otherwise achieved. This article is part of a Special Issue entitled "Status Epilepticus".


Subject(s)
Anticonvulsants/therapeutic use , Benzodiazepines/therapeutic use , Enzyme Therapy , Prodrugs/therapeutic use , Status Epilepticus/drug therapy , Administration, Intranasal , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/chemistry , Aspergillus oryzae/enzymology , Benzodiazepines/administration & dosage , Benzodiazepines/chemistry , Diazepam/administration & dosage , Diazepam/therapeutic use , Dogs , Enzymes/administration & dosage , Madin Darby Canine Kidney Cells , Midazolam/administration & dosage , Midazolam/therapeutic use , Peptide Hydrolases/therapeutic use , Prodrugs/administration & dosage , Prodrugs/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...