Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 13(2): 386-98, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24344235

ABSTRACT

The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Paracrine Communication/drug effects , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/immunology , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , HT29 Cells , Hedgehog Proteins/immunology , Humans , Kinetics , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , NIH 3T3 Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Paracrine Communication/immunology , Protein Binding/immunology , Rats, Wistar , Stromal Cells/drug effects , Stromal Cells/immunology , Stromal Cells/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
2.
Cancer Res ; 71(3): 1029-40, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21245093

ABSTRACT

Insulin-like growth factors (IGF), IGF-I and IGF-II, are small polypeptides involved in regulating cell proliferation, survival, differentiation, and transformation. IGF activities are mediated through binding and activation of IGF-1R or insulin receptor isoform A (IR-A). The role of the IGF-1R pathway in promoting tumor growth and survival is well documented. Overexpression of IGF-II and IR-A is reported in multiple types of cancer and is proposed as a potential mechanism for cancer cells to develop resistance to IGF-1R-targeting therapy. MEDI-573 is a fully human antibody that neutralizes both IGF-I and IGF-II and inhibits IGF signaling through both the IGF-1R and IR-A pathways. Here, we show that MEDI-573 blocks the binding of IGF-I and IGF-II to IGF-1R or IR-A, leading to the inhibition of IGF-induced signaling pathways and cell proliferation. MEDI-573 significantly inhibited the in vivo growth of IGF-I- or IGF-II-driven tumors. Pharmacodynamic analysis demonstrated inhibition of IGF-1R phosphorylation in tumors in mice dosed with MEDI-573, indicating that the antitumor activity is mediated via inhibition of IGF-1R signaling pathways. Finally, MEDI-573 significantly decreased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in IGF-driven tumor models, highlighting the potential utility of (18)F-FDG-PET as a noninvasive pharmacodynamic readout for evaluating the use of MEDI-573 in the clinic. Taken together, these results demonstrate that the inhibition of IGF-I and IGF-II ligands by MEDI-573 results in potent antitumor activity and offers an effective approach to selectively target both the IGF-1R and IR-A signaling pathways.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Insulin-Like Growth Factor II/immunology , Insulin-Like Growth Factor I/immunology , Neoplasms, Experimental/drug therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cell Line , Female , Fluorodeoxyglucose F18 , Humans , Insulin-Like Growth Factor I/antagonists & inhibitors , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/antagonists & inhibitors , Insulin-Like Growth Factor II/metabolism , Mice , Mice, Knockout , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Phosphorylation/drug effects , Positron-Emission Tomography , Protein Isoforms , Radiopharmaceuticals , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...