Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
MycoKeys ; 102: 55-81, 2024.
Article in English | MEDLINE | ID: mdl-38370856

ABSTRACT

Peatswamp forest is a unique habitat that supports high biodiversity, particularly fungal diversity. The current study collected submerged and dead plant parts from Eleiodoxaconferta, Eugeissonatristis and Licualapaludosa from a peatswamp forest in Narathiwat Province, Thailand. Morphological features coupled with multigene phylogenetic analyses of ITS, LSU, rpb2 and tef1-α sequence data identified our isolates as new Distoseptispora species (viz. D.arecacearumsp. nov., D.eleiodoxaesp. nov. and D.narathiwatensissp. nov.). Morphological descriptions, illustrations and notes are provided.

2.
J Fungi (Basel) ; 9(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37367561

ABSTRACT

Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.

3.
J Fungi (Basel) ; 9(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36836299

ABSTRACT

Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endophytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently, many studies introduced novel taxa into the order and revised several families separately. In addition, no ancestral character studies have been conducted for this order. Therefore, in this study, we re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on ancestral character evolution, divergence time estimation, and phylogenetic relationships, including all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony, and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment. Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode. Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the Cretaceous period (66-100 Mya), during which Angiosperms also appeared, rapidly diversified and became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study assessed two hypotheses; the first one being "All Botryosphaeriales species originated as endophytes and then switched into saprobes when their hosts died or into pathogens when their hosts were under stress"; the second hypothesis states that "There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa". Ancestral state reconstruction and nutritional mode analyses revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not provide strong evidence for the first hypothesis mainly due to the significantly low number of studies reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial pigmentation and the pathogenicity of Botryosphaeriales species.

4.
Plants (Basel) ; 11(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079578

ABSTRACT

The NmrA-like proteins have been reported to be important nitrogen metabolism regulators and virulence factors in herbaceous plant pathogens. However, their role in the woody plant pathogen Lasiodiplodia theobromae is less clear. In the current study, we identified a putative NmrA-like protein, Lws1, in L. theobromae and investigated its pathogenic role via gene silencing and overexpression experiments. We also evaluated the effects of external carbon and nitrogen sources on Lws1 gene expression via qRT-PCR assays. Moreover, we analyzed the molecular interaction between Lws1 and its target protein via the yeast two-hybrid system. The results show that Lws1 contained a canonical glycine-rich motif shared by the short-chain dehydrogenase/reductase (SDR) superfamily proteins and functioned as a negative regulator during disease development. Transcription profiling revealed that the transcription of Lws1 was affected by external nitrogen and carbon sources. Interaction analyses demonstrated that Lws1 interacted with a putative GATA family transcription factor, LtAreA. In conclusion, these results suggest that Lws1 serves as a critical regulator in nutrition metabolism and disease development during infection.

5.
Fungal Divers ; 116(1): 547-614, 2022.
Article in English | MEDLINE | ID: mdl-36123995

ABSTRACT

Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.

6.
Pathogens ; 10(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204815

ABSTRACT

Endophytic, saprobic, and pathogenic fungi have evolved elaborate strategies to obtain nutrients from plants. Among the diverse plant-fungi interactions, the most crucial event is the attachment and penetration of the plant surface. Appressoria, specialized infection structures, have been evolved to facilitate this purpose. In this review, we describe the diversity of these appressoria and classify them into two main groups: single-celled appressoria (proto-appressoria, hyaline appressoria, melanized (dark) appressoria) and compound appressoria. The ultrastructure of appressoria, their initiation, their formation, and their function in fungi are discussed. We reviewed the molecular mechanisms regulating the formation and function of appressoria, their strategies to evade host defenses, and the related genomics and transcriptomics. The current review provides a foundation for comprehensive studies regarding their evolution and diversity in different fungal groups.

7.
Front Microbiol ; 11: 906, 2020.
Article in English | MEDLINE | ID: mdl-32528427

ABSTRACT

Helotiales is a polyphyletic order of Ascomycetes. The paucity of relevant molecular data and unclear connections of sexual and asexual morphs present challenges in resolving taxa within this order. In the present study, Patellariopsidaceae fam. nov., the asexual morph of Patellariopsis atrovinosa, and a new record of Cheirospora botryospora (Vibrisseaceae) on Fagus sylvatica (Fagaceae) from Italy are discussed based on morphology and molecular phylogeny. Phylogenetic analyses based on a combined sequence dataset of LSU and ITS were used to infer the phylogenetic relationships within the Helotiales. The results of this research provide a solid base to the taxonomy and phylogeny of Helotiales.

8.
Mycobiology ; 48(3): 169-183, 2020.
Article in English | MEDLINE | ID: mdl-37970567

ABSTRACT

Nigrospora is a monophyletic genus belonging to Apiosporaceae. Species in this genus are phytopathogenic, endophytic, and saprobic on different hosts. In this study, leaf specimens with disease symptoms were collected from host plants from the Shandong Peninsula, China. The fungal taxa associated with these leaf spots were studied using morphology and phylogeny based on ITS, TEF1, and TUB2 gene regions. In this article, we report on the genus Nigrospora with N. gorlenkoana, N. oryzae, N. osmanthi, N. rubi, and N. sphaerica identified with 13 novel host associations including crops with economic importance such as bamboo and Chinese rose.

9.
Sci Rep ; 9(1): 5387, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926851

ABSTRACT

Botryosphaeria dieback on the grapevine is caused by Botryosphaeriaceae fungi, which threatens the yield and quality of grapes. At present, chemical control strategies are often observed to be ineffective in controlling the disease worldwide. Improving our understanding of the molecular mechanisms that confer resistance to pathogens would facilitate the development of more pathogen-tolerant grape varieties. Here, we used RNA sequencing analysis to profile the transcriptome of grapevine green shoots infected with Lasiodiplodia theobromae over a time course of 4, 8 and 12 hours post inoculation. A total of 5181 genes were identified as differentially expressed genes (DEGs), and DEGs were more abundant over time. Further analysis revealed that many of these DEGs are involved in plant-pathogen interactions, hormone signal transduction and phenylpropanoid biosynthesis pathways, suggesting that innate immunity, phytohormone signaling and many phenylpropanoid compounds, which constitute a complex defense network in plants, are involved in the response of grapevine against to L. theobromae infection. This study provides novel insights into the molecular mechanisms of plant-pathogen interactions that will be valuable for the genetic improvement of grapevines.


Subject(s)
Ascomycota/pathogenicity , Plant Diseases/microbiology , Transcription, Genetic , Vitis/microbiology , Gene Expression Regulation, Plant , Vitis/genetics
10.
DNA Res ; 25(1): 87-102, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29036669

ABSTRACT

Botryosphaeriaceae are an important fungal family that cause woody plant diseases worldwide. Recent studies have established a correlation between environmental factors and disease expression; however, less is known about factors that trigger these diseases. The current study reports on the 43.3 Mb de novo genome of Lasiodiplodia theobromae and five other genomes of Botryosphaeriaceae pathogens. Botryosphaeriaceous genomes showed an expansion of gene families associated with cell wall degradation, nutrient uptake, secondary metabolism and membrane transport, which contribute to adaptations for wood degradation. Transcriptome analysis revealed that genes involved in carbohydrate catabolism, pectin, starch and sucrose metabolism, and pentose and glucuronate interconversion pathways were induced during infection. Furthermore, genes in carbohydrate-binding modules, lysine motif domain and the glycosyl hydrolase gene families were induced by high temperature. Among these genes, overexpression of two selected putative lignocellulase genes led to increased virulence in the transformants. These results demonstrate the importance of high temperatures in opportunistic infections. This study also presents a set of Botryosphaeriaceae-specific effectors responsible for the identification of virulence-related pathogen-associated molecular patterns and demonstrates their active participation in suppressing hypersensitive responses. Together, these findings significantly expand our understanding of the determinants of pathogenicity or virulence in Botryosphaeriaceae and provide new insights for developing management strategies against them.

11.
Sci Rep ; 7(1): 17304, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29230063

ABSTRACT

Downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevines worldwide. So far, the genetic diversity and origin of the Chinese P. viticola population are unclear. In the present study, 103 P. viticola isolates were sequenced at four gene regions: internal transcribed spacer one (ITS), large subunit of ribosomal RNA (LSU), actin gene (ACT) and beta-tubulin (TUB). The sequences were analyzed to obtain polymorphism and diversity information of the Chinese population as well as to infer the relationships between Chinese and American isolates. High genetic diversity was observed for the Chinese population, with evidence of sub-structuring based on climate. Phylogenetic analysis and haplotype networks showed evidence of close relationships between some American and Chinese isolates, consistent with recent introduction from America to China via planting materials. However, there is also evidence for endemic Chinese P. viticola isolates. Our results suggest that the current Chinese Plasmopara viticola population is an admixture of endemic and introduced isolates.


Subject(s)
Genetic Variation , Genetics, Population , Peronospora/isolation & purification , Plant Diseases/genetics , Plant Proteins/genetics , Vitis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Peronospora/classification , Peronospora/genetics , Phylogeny , Plant Diseases/immunology , Plant Diseases/microbiology , Vitis/immunology , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...