Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793543

ABSTRACT

People living with HIV (PLWH) can exhibit impaired immune responses to vaccines. Accumulating evidence indicates that PLWH, particularly those receiving antiretroviral therapy, mount strong antibody responses to COVID-19 vaccines, but fewer studies have examined cellular immune responses to the vaccinations. Here, we used an activation-induced marker (AIM) assay to quantify SARS-CoV-2 spike-specific CD4+ and CD8+ T cells generated by two and three doses of COVID-19 vaccines in 50 PLWH receiving antiretroviral therapy, compared to 87 control participants without HIV. In a subset of PLWH, T-cell responses were also assessed after post-vaccine breakthrough infections and/or receipt of a fourth vaccine dose. All participants remained SARS-CoV-2 infection-naive until at least one month after their third vaccine dose. SARS-CoV-2 infection was determined by seroconversion to a Nucleocapsid (N) antigen, which occurred in 21 PLWH and 38 control participants after the third vaccine dose. Multivariable regression analyses were used to investigate the relationships between sociodemographic, health- and vaccine-related variables, vaccine-induced T-cell responses, and breakthrough infection risk. We observed that a third vaccine dose boosted spike-specific CD4+ and CD8+ T-cell frequencies significantly above those measured after the second dose (all p < 0.0001). Median T-cell frequencies did not differ between PLWH and controls after the second dose (p > 0.1), but CD8+ T-cell responses were modestly lower in PLWH after the third dose (p = 0.02), an observation that remained significant after adjusting for sociodemographic, health- and vaccine-related variables (p = 0.045). In PLWH who experienced a breakthrough infection, median T-cell frequencies increased even higher than those observed after three vaccine doses (p < 0.03), and CD8+ T-cell responses in this group remained higher even after a fourth vaccine dose (p = 0.03). In multivariable analyses, the only factor associated with an increased breakthrough infection risk was younger age, which is consistent with the rapid increase in SARS-CoV-2 seropositivity that was seen among younger adults in Canada after the initial appearance of the Omicron variant. These results indicate that PLWH receiving antiretroviral therapy mount strong T-cell responses to COVID-19 vaccines that can be enhanced by booster doses or breakthrough infection.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , HIV Infections , SARS-CoV-2 , Humans , Male , HIV Infections/immunology , HIV Infections/drug therapy , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , CD8-Positive T-Lymphocytes/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Aged , Immunity, Cellular , Breakthrough Infections
3.
Open Forum Infect Dis ; 10(3): ofad073, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36910697

ABSTRACT

Background: Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods: We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results: Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions: Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.

4.
AIDS ; 37(5): F11-F18, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36789806

ABSTRACT

OBJECTIVE: Limited data exist regarding the immune benefits of fourth COVID-19 vaccine doses in people with HIV (PWH) receiving antiretroviral therapy (ART), particularly now that most have experienced a SARS-CoV-2 infection. We quantified wild-type, Omicron-BA.5 and Omicron-BQ.1-specific neutralization up to 1 month post-fourth COVID-19 vaccine dose in 63 (19 SARS-CoV-2-naive and 44 SARS-CoV-2-experienced) PWH. DESIGN: A longitudinal observational cohort. METHODS: Quantification of wild-type-, Omicron-BA.5, and Omicron-BQ.1-specific neutralization using live virus assays. RESULTS: Participants received monovalent (44%) and bivalent (56%) mRNA fourth doses. In COVID-19-naive PWH, fourth doses enhanced wild-type and Omicron-BA.5-specific neutralization modestly above three-dose levels ( P  = 0.1). In COVID-19-experienced PWH, fourth doses enhanced wild-type specific neutralization modestly ( P  = 0.1) and BA.5-specific neutralization substantially ( P  = 0.002). Consistent with humoral benefits of 'hybrid' immunity, COVID-19-experienced PWH exhibited the highest neutralization post-fourth dose, wherein those with Omicron-era infections displayed higher wild-type specific ( P  = 0.04) but similar BA.5 and BQ.1-specific neutralization than those with pre-Omicron-era infections. Nevertheless, BA.5-specific neutralization was significantly below wild-type in everyone regardless of COVID-19 experience, with BQ.1-specific neutralization lower still (both P  < 0.0001). In multivariable analyses, fourth dose valency did not affect neutralization magnitude. Rather, an mRNA-1273 fourth dose (versus a BNT162b2 one) was the strongest correlate of wild-type specific neutralization, while prior COVID-19, regardless of pandemic era, was the strongest correlate of BA.5 and BQ.1-specific neutralization post-fourth dose. CONCLUSION: Fourth COVID-19 vaccine doses, irrespective of valency, benefit PWH regardless of prior SARS-CoV-2 infection. Results support recommendations that all adults receive a fourth COVID-19 vaccine dose within 6 months of their third dose (or their most recent SARS-CoV-2 infection).


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/complications , HIV Infections/drug therapy , SARS-CoV-2
5.
J Infect Dis ; 227(7): 838-849, 2023 04 12.
Article in English | MEDLINE | ID: mdl-35668700

ABSTRACT

BACKGROUND: Longer-term humoral responses to 2-dose coronavirus disease 2019 (COVID-19) vaccines remain incompletely characterized in people living with human immunodeficiency virus (HIV) (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, angiotensin-converting enzyme 2 (ACE2) displacement, and viral neutralization against wild-type and Omicron strains up to 6 months after 2-dose vaccination, and 1 month after the third dose, in 99 PLWH receiving suppressive antiretroviral therapy and 152 controls. RESULTS: Although humoral responses naturally decline after 2-dose vaccination, we found no evidence of lower antibody concentrations or faster rates of antibody decline in PLWH compared with controls after accounting for sociodemographic, health, and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after 2 doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than responses against wild-type virus. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after 2- and 3-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.


Subject(s)
COVID-19 , HIV Infections , Humans , HIV , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Antibodies , Vaccination , HIV Infections/drug therapy , Antibodies, Viral
6.
AIDS ; 37(5): 709-721, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36545783

ABSTRACT

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Subject(s)
COVID-19 , HIV Infections , Humans , Antibody Formation , COVID-19 Vaccines , COVID-19/prevention & control , HIV Infections/complications , HIV Infections/drug therapy , SARS-CoV-2 , Vaccination , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
7.
Front Immunol ; 13: 947021, 2022.
Article in English | MEDLINE | ID: mdl-36148225

ABSTRACT

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.


Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
8.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35543278

ABSTRACT

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
9.
NPJ Vaccines ; 7(1): 28, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35228535

ABSTRACT

Humoral responses to COVID-19 vaccines in people living with HIV (PLWH) remain incompletely characterized. We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain (RBD), ACE2 displacement and viral neutralization activities one month following the first and second COVID-19 vaccine doses, and again 3 months following the second dose, in 100 adult PLWH and 152 controls. All PLWH were receiving suppressive antiretroviral therapy, with median CD4+ T-cell counts of 710 (IQR 525-935) cells/mm3, though nadir CD4+ T-cell counts ranged as low as <10 cells/mm3. After adjustment for sociodemographic, health and vaccine-related variables, HIV infection was associated with lower anti-RBD antibody concentrations and ACE2 displacement activity after one vaccine dose. Following two doses however, HIV was not significantly associated with the magnitude of any humoral response after multivariable adjustment. Rather, older age, a higher burden of chronic health conditions, and dual ChAdOx1 vaccination were associated with lower responses after two vaccine doses. No significant correlation was observed between recent or nadir CD4+ T-cell counts and responses to two vaccine doses in PLWH. These results indicate that PLWH with well-controlled viral loads and CD4+ T-cell counts in a healthy range generally mount strong initial humoral responses to dual COVID-19 vaccination. Factors including age, co-morbidities, vaccine brand, response durability and the rise of new SARS-CoV-2 variants will influence when PLWH will benefit from additional doses. Further studies of PLWH who are not receiving antiretroviral treatment or who have low CD4+ T-cell counts are needed, as are longer-term assessments of response durability.

10.
medRxiv ; 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35350205

ABSTRACT

Background: Longer-term humoral responses to two-dose COVID-19 vaccines remain incompletely characterized in people living with HIV (PLWH), as do initial responses to a third dose. Methods: We measured antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement and viral neutralization against wild-type and Omicron strains up to six months following two-dose vaccination, and one month following the third dose, in 99 PLWH receiving suppressive antiretroviral therapy, and 152 controls. Results: Though humoral responses naturally decline following two-dose vaccination, we found no evidence of lower antibody concentrations nor faster rates of antibody decline in PLWH compared to controls after accounting for sociodemographic, health and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after two doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though anti-Omicron responses were consistently weaker than against wild-type.Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. Conclusion: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after two- and three-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.

11.
J Antimicrob Chemother ; 77(4): 979-988, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35061879

ABSTRACT

BACKGROUND: Routine HIV drug resistance genotyping identified an integrase sequence harbouring T97A, E138K, G140S and Q148H, with high predicted resistance to all integrase strand transfer inhibitors (INSTIs). OBJECTIVES: To assess the impact of these substitutions alone and together on phenotypic INSTI susceptibility. METHODS: We constructed recombinant NL4.3 viruses harbouring all mutation combinations in the autologous integrase sequence. Viruses were grown in GFP-reporter CD4+ T-cells in the presence of 0.01-1000 nM raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. Infection was measured by imaging cytometry. RESULTS: Q148H-containing viruses lacking G140S failed to propagate or mutated in vitro, consistent with fitness costs. Statistically significant reductions in INSTI susceptibility were observed for several mutation combinations, as follows. T97A or G140S alone conferred 3.6- to 5.6-fold decreased susceptibility to raltegravir and elvitegravir. Two-mutation combinations conferred low-to-moderate resistance to raltegravir and elvitegravir only, except G140S/Q148H which eliminated raltegravir and elvitegravir activity and conferred 24.6-, 7.9-, and 107.5-fold reduced susceptibility to dolutegravir, bictegravir and cabotegravir. Addition of E138K to G140S/Q148H conferred 35.5, 11.6 and 208-fold reduced susceptibility to dolutegravir, bictegravir, and cabotegravir, while addition of T97A to G140S/Q148H conferred 318, 121 and >1000-fold reduced susceptibility to these drugs. T97A/E138K/G140S/Q148H in the autologous backbone conferred >300-fold reduced susceptibility to all INSTIs. Notably, bictegravir EC50 was significantly lower when T97A/E138K/G140S/Q148H was introduced into NL4.3, suggesting that other mutations in the autologous sequence enhanced resistance. CONCLUSIONS: High-level dolutegravir, bictegravir and cabotegravir resistance requires multiple integrase substitutions including compensatory mutations. T97A and E138K further enhance the resistance conferred by G140S/Q148H, yielding >300-fold decreased susceptibility to all INSTIs when all four mutations are present.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Integrase/genetics , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , HIV-1/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Mutation , Pyridones/pharmacology , Raltegravir Potassium/pharmacology , Raltegravir Potassium/therapeutic use
12.
medRxiv ; 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35018381

ABSTRACT

BACKGROUND: Third COVID-19 vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and Omicron (BA.1) strains from pre-vaccine up to one month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following two vaccine doses, humoral immunity was weaker, less functional and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. Third doses boosted antibody binding and function to higher levels than second-doses, and induced responses in older adults that were comparable in magnitude to those in younger adults. Humoral responses against Omicron were universally weaker than against the ancestral strain after both second and third doses; nevertheless, after three doses, anti-Omicron responses in older adults reached equivalence to those in younger adults. After three vaccine doses, the number of chronic health conditions, but not age per se, was the strongest consistent correlate of weaker humoral responses. CONCLUSION: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.

13.
J Infect Dis ; 225(7): 1129-1140, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34888688

ABSTRACT

BACKGROUND: The magnitude and durability of immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines remain incompletely characterized in the elderly. METHODS: Anti-spike receptor-binding domain (RBD) antibodies, angiotensin-converting enzyme 2 (ACE2) competition, and virus neutralizing activities were assessed in plasma from 151 health care workers and older adults (range, 24-98 years of age) 1 month following the first vaccine dose, and 1 and 3 months following the second dose. RESULTS: Older adults exhibited significantly weaker responses than younger health care workers for all humoral measures evaluated and at all time points tested, except for ACE2 competition activity after 1 vaccine dose. Moreover, older age remained independently associated with weaker responses even after correction for sociodemographic factors, chronic health condition burden, and vaccine-related variables. By 3 months after the second dose, all humoral responses had declined significantly in all participants, and remained significantly lower among older adults, who also displayed reduced binding antibodies and ACE2 competition activity towards the Delta variant. CONCLUSIONS: Humoral responses to COVID-19 mRNA vaccines are significantly weaker in older adults, and antibody-mediated activities in plasma decline universally over time. Older adults may thus remain at elevated risk of infection despite vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Humoral , Infant , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
14.
ACS Med Chem Lett ; 12(11): 1818-1823, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34795872

ABSTRACT

The observation that stilbene 3 (5350150) blocks HIV replication through its impact on HIV mRNA processing prompted a program to develop non-cytotoxic analogues that maintain its mechanism of action. This initially involved replacement of the central double bond in 3 by an amide function and the quinoline motif by a 2-aminobenzothiazole subunit, as in 12jj (R' = Cl), 12pp (R = NO2), and 12vv (R = CF3). On the basis of the possible CF3 ↔ NO2 bioisostere relationship in 12vv and 12pp, compound 23 was prepared and also found to be active. In the final step, the thiazole compounds 28 (GPS488) (EC50 = 1.66 µM) and 29 (GPS491) (EC50 = 0.47 µM) were prepared and evaluated. Similar activity and cell viability values (therapeutic index (TI = CC50/EC50) values of 50-100) were observed in primary peripheral blood mononuclear cells. Furthermore, they remained active against a panel of HIV mutant strains displaying resistance to individual drugs used in antiretroviral therapy. It was determined that compound 29 suppressed expression of the HIV-1 structural protein Gag and altered HIV-1 RNA accumulation, decreasing the abundance of RNAs encoding the structural proteins while increasing levels of viral RNAs encoding the regulatory proteins, a pattern similar to that seen for compound 3.

15.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: mdl-35062264

ABSTRACT

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , RNA Processing, Post-Transcriptional/drug effects , Thiazoles/pharmacology , Virus Replication/drug effects , Adenoviridae/physiology , Antiviral Agents/chemistry , Cell Line , Coronavirus/classification , Coronavirus/physiology , Gene Expression/drug effects , HIV-1/physiology , Humans , RNA Splicing Factors/metabolism , RNA, Viral/metabolism , Thiazoles/chemistry
16.
PLoS Pathog ; 16(2): e1008307, 2020 02.
Article in English | MEDLINE | ID: mdl-32069328

ABSTRACT

The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drug-resistant strains of HIV-1 (IC50: ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by ≥ 10-20%), gene expression (0.01-0.46% by ≥ 2-5 fold), and protein abundance (0.02-0.34% by ≥ 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.


Subject(s)
Alternative Splicing/drug effects , Virus Replication/drug effects , Alternative Splicing/physiology , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , HIV Infections , HIV Seropositivity , HIV-1/physiology , HeLa Cells , Humans , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Signaling System/physiology , RNA Processing, Post-Transcriptional/physiology , RNA Splicing/genetics , RNA, Viral/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Small Molecule Libraries , Virus Replication/physiology , tat Gene Products, Human Immunodeficiency Virus/genetics
17.
J Infect Dis ; 218(11): 1773-1776, 2018 10 20.
Article in English | MEDLINE | ID: mdl-30010985

ABSTRACT

Bictegravir (BIC) and cabotegravir (CAB) are the latest available HIV integrase inhibitors in clinical trials. The combination of major integrase inhibitor substitutions G140S/Q148H has been shown to confer high-level resistance to the approved integrase inhibitors raltegravir (RAL) and elvitegravir (EVG) but not necessarily dolutegravir (DTG). We assayed recombinant viruses made from patient-derived RNA extracts for resistance phenotype for a panel of viruses containing G140S/Q148H with additional accessory substitutions. The accumulation of multiple integrase substitutions confers high-level resistance to all 5 integrase inhibitors. There is extensive cross-resistance between DTG, BIC, and CAB (r = 0.96-0.97).


Subject(s)
Drug Resistance, Viral , HIV Integrase Inhibitors/pharmacology , HIV-1 , Amides , Cell Line , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Oxazines , Piperazines , Pyridones/pharmacology
18.
Nucleic Acids Res ; 45(7): 4051-4067, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27928057

ABSTRACT

We recently identified the 4-pyridinone-benzisothiazole carboxamide compound 1C8 as displaying strong anti-HIV-1 potency against a variety of clinical strains in vitro. Here we show that 1C8 decreases the expression of HIV-1 and alters splicing events involved in the production of HIV-1 mRNAs. Although 1C8 was designed to be a structural mimic of the fused tetracyclic indole compound IDC16 that targets SRSF1, it did not affect the splice site shifting activity of SRSF1. Instead, 1C8 altered splicing regulation mediated by SRSF10. Depleting SRSF10 by RNA interference affected viral splicing and, like 1C8, decreased expression of Tat, Gag and Env. Incubating cells with 1C8 promoted the dephosphorylation of SRSF10 and increased its interaction with hTra2ß, a protein previously implicated in the control of HIV-1 RNA splicing. While 1C8 affects the alternative splicing of cellular transcripts controlled by SRSF10 and hTra2ß, concentrations greater than those needed to inhibit HIV-1 replication were required to elicit significant alterations. Thus, the ability of 1C8 to alter the SRSF10-dependent splicing of HIV-1 transcripts, with minor effects on cellular splicing, supports the view that SRSF10 may be used as a target for the development of new anti-viral agents.


Subject(s)
Alternative Splicing/drug effects , Anti-HIV Agents/pharmacology , Benzothiazoles/pharmacology , Cell Cycle Proteins/metabolism , HIV-1/drug effects , Niacinamide/analogs & derivatives , Repressor Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Virus Replication/drug effects , Anti-HIV Agents/chemistry , Benzothiazoles/chemistry , Cells, Cultured , HIV-1/genetics , HIV-1/metabolism , HIV-1/physiology , HeLa Cells , Humans , Niacinamide/chemistry , Niacinamide/pharmacology , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
19.
J Med Chem ; 59(5): 1869-79, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26878150

ABSTRACT

A 256-compound library was evaluated in an anti-HIV screen to identify structural "mimics" of the fused tetracyclic indole compound 1 (IDC16) that conserve its anti-HIV activity without associated cytotoxicity. Four diheteroarylamide-type compounds, containing a common 5-nitroisobenzothiazole motif, were identified as active. In subsequent screens, the most potent compound 9 (1C8) was active against wild-type HIV-1IIIB (subtype B, X4-tropic) and HIV-1 97USSN54 (subtype A, R5-tropic) with EC50's of 0.6 and 0.9 µM, respectively. Compound 9 also inhibited HIV strains resistant to drugs targeting HIV reverse transcriptase, protease, integrase, and coreceptor CCR5 with EC50's ranging from 0.9 to 1.5 µM. The CC50 value obtained in a cytotoxicity assay for compound 9 was >100 µM, corresponding to a therapeutic index (CC50/EC50) of approximately 100. Further comparison studies revealed that, whereas the anti-HIV activity for compound 9 and the parent molecule 1 are similar, the cytotoxic effect for compound 9 was, as planned, markedly suppressed.


Subject(s)
Alternative Splicing/drug effects , Anti-HIV Agents/pharmacology , Benzothiazoles/pharmacology , HIV-1/drug effects , HIV-1/growth & development , Pyridones/pharmacology , RNA Precursors/metabolism , RNA, Viral/metabolism , Virus Replication/drug effects , Alternative Splicing/genetics , Anti-HIV Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , Humans , Integrases/metabolism , Molecular Structure , Peptide Hydrolases/metabolism , Pyridones/chemical synthesis , Pyridones/chemistry , RNA Precursors/genetics , RNA, Viral/genetics , Receptors, CXCR5/antagonists & inhibitors , Structure-Activity Relationship
20.
J Psychosoc Oncol ; 32(3): 264-88, 2014.
Article in English | MEDLINE | ID: mdl-24611914

ABSTRACT

This study examines the process of dyadic coping among couples who are managing stress related to a partner's breast cancer diagnosis and identifies cultural factors that affect how couples cope together. Utilizing a qualitative method based on relational psychologies, the "Listening Guide," the authors analyzed the narratives of 28 couples who where coping with early-stage breast cancer and lived in Hong Kong-China, India, and the United States. Analysis revealed four cultural factors influencing the process of coping with breast cancer. These factors included (1) family boundaries, (2) gender roles, (3) personal control, and (4) interdependence. Some couples were able to transcend prevailing cultural norms to re-establish balance in their lives and adapt to the cancer. Implications for using couple-based interventions with cancer patients in differing cultural contexts are discussed.


Subject(s)
Adaptation, Psychological , Breast Neoplasms/psychology , Cultural Characteristics , Interpersonal Relations , Spouses/psychology , Stress, Psychological/psychology , Adult , China , Cross-Cultural Comparison , Female , Humans , India , Male , Middle Aged , Models, Psychological , Narration , Qualitative Research , Spouses/statistics & numerical data , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...