Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Med Sci Sports Exerc ; 56(5): 839-850, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38233990

ABSTRACT

PURPOSE: High-intensity interval training (HIIT) can efficiently decrease total and (intra-)abdominal fat mass (FM); however, the effects of running versus cycling HIIT programs on FM reduction have not been compared yet. In addition, the link between HIIT-induced FM reduction and gut microbiota must be better investigated. The aim of this study was to compare the effects of two 12-wk HIIT isoenergetic programs (cycling vs running) on body composition and fecal microbiota composition in nondieting men with overweight or obesity. METHODS: Sixteen men (age, 54.2 ± 9.6 yr; body mass index, 29.9 ± 2.3 kg·m -2 ) were randomly assigned to the HIIT-BIKE (10 × 45 s at 80%-85% of maximal heart rate, 90-s active recovery) or HIIT-RUN (9 × 45 s at 80%-85% of maximal heart rate, 90-s active recovery) group (3 times per week). Dual-energy x-ray absorptiometry was used to determine body composition. Preintervention and postintervention fecal microbiota composition was analyzed by 16S rRNA gene sequencing, and diet was controlled. RESULTS: Overall, body weight, and abdominal and visceral FM decreased over time ( P < 0.05). No difference was observed for weight, total body FM, and visceral FM between groups (% change). Conversely, abdominal FM loss was greater in the HIIT-RUN group (-16.1% vs -8.3%; P = 0.050). The α-diversity of gut microbiota did not vary between baseline and intervention end and between groups, but was associated with abdominal FM change ( r = -0.6; P = 0.02). The baseline microbiota profile and composition changes were correlated with total and abdominal/visceral FM losses. CONCLUSIONS: Both cycling and running isoenergetic HIIT programs improved body composition in men with overweight/obesity. Baseline intestinal microbiota composition and its postintervention variations were correlated with FM reduction, strengthening the possible link between these parameters. The mechanisms underlying the greater abdominal FM loss in the HIIT-RUN group require additional investigations.


Subject(s)
Gastrointestinal Microbiome , High-Intensity Interval Training , Running , Adult , Humans , Male , Middle Aged , Bicycling , Body Composition/physiology , Obesity/therapy , Overweight/therapy , RNA, Ribosomal, 16S
2.
BMJ Open ; 12(12): e061527, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460331

ABSTRACT

INTRODUCTION: The management of mid and low rectal cancer is based on neoadjuvant chemoradiotherapy (CRT) followed by standardised surgery. There is no biomarker in rectal cancer to aid clinicians in foreseeing treatment response. The determination of factors associated with treatment response might allow the identification of patients who require tailored strategies (eg, therapeutic de-escalation or intensification). Colibactin-producing Escherichia coli (CoPEC) has been associated with aggressive colorectal cancer and could be a poor prognostic factor. Currently, no study has evaluated the potential association between intestinal microbiota composition and tumour response to CRT in mid and low rectal cancer. The aim of this study is to assess the association between response to neoadjuvant CRT and faecal intestinal microbiota composition and/or CoPEC prevalence in patients with mid or low rectal cancer. METHODS AND ANALYSIS: This is a non-randomised bicentric prospective clinical study with a recruitment capacity of 200 patients. Three stool samples will be collected from participants with histological-proven adenocarcinome of mid or low rectum who meet eligibility criteria of the study protocol: one before neoadjuvant treatment start, one in the period between CRT end and surgery and one the day before surgery. In each sample, CoPEC will be detected by culture in special media and molecular (PCR) approaches. The global microbiota composition will be also assessed by the bacterial 16S rRNA gene sequencing. Neoadjuvant CRT response and tumour regression grade will be described using the Dworak system at pathological examination. Clinical data and survival outcomes will also be collected and investigated. ETHICS AND DISSEMINATION: MICARE was approved by the local ethics committee (Comité de Protection des Personnes Sud-Est II, 18 December 2019. Reference number 2019-A02493-54 and the institutional review board. Patients will be required to provide written informed consent. Results will be published in a peer reviewed journal. TRIAL REGISTRATION NUMBER: NCT04103567.


Subject(s)
Escherichia coli Infections , Rectal Neoplasms , Humans , Neoadjuvant Therapy , Escherichia coli , Prospective Studies , RNA, Ribosomal, 16S , Rectal Neoplasms/therapy , Biomarkers
3.
Dis Model Mech ; 15(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36172858

ABSTRACT

Adherent-invasive Escherichia coli (AIEC) were investigated for their involvement in the induction/chronicity of intestinal inflammation in Crohn's disease (CD). AIEC gut establishment is favoured by overexpression of the glycoprotein CEACAM6 in the ileal epithelium. We generated a transgenic mouse model, named 'Vill-hCC6', in which the human CEACAM6 gene was under the control of the villin promoter, conditioning expression in the small intestine. We demonstrated that CEACAM6 is strongly expressed in the small intestine mucosa and is correlated with numerous glycosylations displayed at the brush border of enterocytes. Ex vivo, the AIEC-enterocyte interaction was enhanced by CEACAM6 expression and necessitated the presence of the bacterial adhesive factor FimH. Finally, AIEC bacteria preferentially persisted in a FimH-dependent manner in the ileal mucosa of Vill-hCC6 mice compared to wild-type mice. This preclinical model opens new perspectives in the mechanistic study of the AIEC pathobiont and represents a valuable tool to evaluate the efficacy of new strategies to eliminate AIEC implanted in the ileal mucosa, such as phages, inhibitory and/or anti-virulence molecules, or CRISPR-based strategies targeting virulence or fitness factors of AIEC bacteria.


Subject(s)
Crohn Disease , Escherichia coli Infections , Microbiota , Mice , Humans , Animals , Crohn Disease/metabolism , Crohn Disease/microbiology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Bacterial Adhesion , Escherichia coli/metabolism , Mice, Transgenic , Disease Models, Animal
4.
United European Gastroenterol J ; 9(9): 1007-1018, 2021 11.
Article in English | MEDLINE | ID: mdl-34791806

ABSTRACT

BACKGROUND AND AIMS: The identification of Crohn's disease (CD)-associated adherent and invasive Escherichia coli (AIEC) is time-consuming and requires ileal biopsies. We aimed to identify a faster and less invasive methods to detect ileal colonization by AIEC in CD patients. METHODS: CD patients requiring ileo-colonoscopy were consecutively enrolled in this prospective multicenter study. Samples from saliva, serum, stools, and ileal biopsies of CD patients were collected. RESULTS: Among 102 CD patients, the prevalence of AIEC on ileal biopsies was 24.5%. The abundance and global invasive ability of ileal-associated total E. coli were respectively ten-fold (p = 0.0065) and two-fold (p = 0.0007) higher in AIEC-positive (vs. AIEC-negative), while abundance of total E. coli in the feces was not correlated with AIEC status in the ileum. The best threshold of ileal total E. coli was 60 cfu/biopsy to detect AIEC-positive patients, with high negative predictive value (NPV) (94.1%[80.3-99.3]), while the global invasive ability (>9000 internalized bacteria) was able to detect the presence of AIEC with high positive predictive value (80.0% [55.2-100.0]). Overall, 78.1% of the AIEC + patients were colonized by two or less different AIEC strains. The level of serum anti-total E. coli antibodies (AEcAb) was higher in AIEC-positive patients (p = 0.038) with a very high negative predictive value (96.6% [89.9-100.0]) (p = 0.038) for a cut-off value > 1.9 × 10-3 . CONCLUSIONS: More than two thirds of AIEC-positive CD patients were colonized by two or less AIEC strains. While stools samples are not accurate to screen AIEC status, the AEcAb level appears to be an attractive, rapid and easier biomarker to identify patients with Crohn's disease harboring AIEC.


Subject(s)
Antibodies, Bacterial/blood , Crohn Disease/microbiology , Escherichia coli/isolation & purification , Ileum/microbiology , Biomarkers/blood , Biopsy , Colonoscopy , Escherichia coli/immunology , Feces/microbiology , Female , Humans , Male , Prospective Studies , Saliva/microbiology
5.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919372

ABSTRACT

Natural mineral water (NMWs) intake has been traditionally used in the treatment of various gastrointestinal diseases. We investigated the effect of two French NMWs, one a calcium and magnesium sulphate, sodium chloride, carbonic, and ferruginous water (NMW1), the other a mainly bicarbonate water (NMW2) on the prevention of intestinal inflammation. Intestinal epithelial cells stimulated with heat inactivated Escherichia coli or H2O2 were treated with NMWs to evaluate the anti-inflammatory effects. Moderate colitis was induced by 1% dextran sulfate sodium (DSS) in Balbc/J mice drinking NMW1, NWW2, or control water. General signs and histological features of colitis, fecal lipocalin-2 and pro-inflammatory KC cytokine levels, global mucosa-associated microbiota, were analyzed. We demonstrated that both NMW1 and NMW2 exhibited anti-inflammatory effects using intestinal cells. In induced-colitis mice, NMW1 was effective in dampening intestinal inflammation, with significant reductions in disease activity scores, fecal lipocalin-2 levels, pro-inflammatory KC cytokine release, and intestinal epithelial lesion sizes. Moreover, NMW1 was sufficient to prevent alterations in the mucosa-associated microbiota. These observations, through mechanisms involving modulation of the mucosa-associated microbiota, emphasize the need of investigation of the potential clinical efficiency of such NMWs to contribute, in human beings, to a state of low inflammation in inflammatory bowel disease.


Subject(s)
Colitis/prevention & control , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Mineral Waters/administration & dosage , Animals , Colitis/chemically induced , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred BALB C
6.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805299

ABSTRACT

BACKGROUND: Adherent-invasive Escherichia coli (AIEC) have been implicated in the etiology of Crohn's disease. The AIEC reference strain LF82 possesses a pathogenicity island similar to the high pathogenicity island of Yersinia spp., which encodes the yersiniabactin siderophore required for iron uptake and growth of the bacteria in iron-restricted environment. Here, we investigated the role of yersiniabactin during AIEC infection. METHODS: Intestinal epithelial T84 cells and CEABAC10 transgenic mice were infected with LF82 or its mutants deficient in yersiniabactin expression. Autophagy was assessed by Western blot analysis for p62 and LC3-II expression. RESULTS: Loss of yersiniabactin decreased the growth of LF82 in competitive conditions, reducing the ability of LF82 to adhere to and invade T84 cells and to colonize the intestinal tract of CEABAC10 mice. However, yersiniabactin deficiency increased LF82 intracellular replication. Mechanistically, a functional yersiniabactin is necessary for LF82-induced expression of HIF-1α, which is implicated in autophagy activation in infected cells. CONCLUSION: Our study highlights a novel role for yersiniabactin siderophore in AIEC-host interaction. Indeed, yersiniabactin, which is an advantage for AIEC to growth in a competitive environment, could be a disadvantage for the bacteria as it activates autophagy, a key host defense mechanism, leading to bacterial clearance.


Subject(s)
Autophagy , Crohn Disease/etiology , Escherichia coli Infections/complications , Escherichia coli/pathogenicity , Intestinal Mucosa/physiopathology , Phenols/metabolism , Thiazoles/metabolism , Animals , Crohn Disease/physiopathology , Escherichia coli/metabolism , Escherichia coli Infections/physiopathology , Male , Mice , Mice, Transgenic
7.
J Psychiatry Neurosci ; 45(5): 344-355, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32459080

ABSTRACT

Background: Altered function of serotonin receptor 1A (5-HT1AR) has been consistently implicated in anxiety, major depressive disorder and resistance to antidepressants. Mechanisms by which the function of 5-HT1AR (expressed as an autoreceptor in serotonergic raphe neurons and as a heteroreceptor in serotonin [5-HT] projection areas) is altered include regulation of its expression, but 5-HT1AR trafficking may also be involved. Methods: We investigated the consequences of the lack of Yif1B (the 5-HT1AR trafficking protein) on 5-HT neurotransmission in mice, and whether Yif1B expression might be affected under conditions known to alter 5-HT neurotransmission, such as anxious or depressive states or following treatment with fluoxetine (a selective serotonin reuptake inhibitor) in humans, monkeys and mice. Results: Compared with wild-type mice, Yif1B-knockout mice showed a significant decrease in the forebrain density of 5-HT projection fibres and a hypofunctionality of 5-HT1A autoreceptors expressed on raphe 5-HT neurons. In addition, social interaction was less in Yif1B-knockout mice, which did not respond to the antidepressant-like effect of acute fluoxetine injection. In wild-type mice, social defeat was associated with downregulated Yif1B mRNA in the prefrontal cortex, and chronic fluoxetine treatment increased Yif1B expression. The expression of Yif1B was also downregulated in the postmortem prefrontal cortex of people with major depressive disorder and upregulated after chronic treatment with a selective serotonin reuptake inhibitor in monkeys. Limitations: We found sex differences in Yif1B expression in humans and monkeys, but not in mice under the tested conditions. Conclusion: These data support the concept that Yif1B plays a critical role in 5-HT1AR functioning and brain 5-HT homeostasis. The opposite changes in its expression observed in anxious or depressive states and after therapeutic fluoxetine treatment suggest that Yif1B might be involved in vulnerability to anxiety and depression, and fluoxetine efficacy.


Subject(s)
Depressive Disorder, Major/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/metabolism , Social Behavior , Vesicular Transport Proteins/drug effects , Vesicular Transport Proteins/metabolism , Animals , Autopsy , Behavior, Animal/physiology , Disease Models, Animal , Female , Fluoxetine/pharmacology , Humans , Macaca mulatta , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Raphe Nuclei/drug effects , Raphe Nuclei/physiology , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Sex Characteristics
8.
BMJ Open ; 10(1): e031472, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31915159

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is still associated with poor prognosis, especially in patients with advanced disease. Development of new prognostic tools replacing or supplementing those routinely used is definitely needed, with the aim to optimise and personalise treatment strategies. Gut microbiota composition and body composition profile (obesity, sarcopenia and metabolic syndrome) have recently been reported separately as new relevant prognostic factors for postoperative surgical and oncologic outcomes following CRC surgery. However interactions that exist between these factors have been poorly studied. The purpose of this translational prospective cohort study (METABIOTE) is to investigate potential interactions between gut microbiota, body composition profile and postoperative outcomes and recurrence in patients undergoing surgery for non-metastatic sporadic CRC. METHODS AND ANALYSIS: This single-centre project aims to prospectively enrol 300 consecutive patients undergoing surgery for non-metastatic sporadic CRC at the University Hospital of Clermont-Ferrand, France for the identification of specific microbial signatures (from tumour, colonic mucosa and stools samples) associated with particular metabolic profiles that could impact postoperative morbidity and oncologic outcomes, using microbiological, molecular and imaging approaches. The primary outcome is the 5-year overall survival (OS). Other outcomes are 5-year CRC-related OS, 5-year disease-free survival, 30-day postoperative morbidity, 90-day postoperative mortality and length of hospital stay. ETHICS AND DISSEMINATION: This study protocol was reviewed and approved by an independent French regional review board (n°2018-A00352-53, 'Comité de Protection des Personnes Ile de France VII' on 4 July 2018, declared to the competent French authority ('Agence Nationale de Sécurité du Médicament et des produits de santé', France), and registered on the Clinical Trials web-based platform (NCT03843905). Oral and written informed consent will be obtained from each included patient. Study results will be reported to the scientific community at conferences and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER: NCT03843905..


Subject(s)
Colorectal Neoplasms/surgery , Body Composition , Colorectal Neoplasms/complications , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome , Humans , Length of Stay , Metabolic Syndrome/complications , Obesity/complications , Prospective Studies , Risk Factors , Sarcopenia/complications , Survival Analysis , Treatment Outcome
9.
Cells ; 8(1)2019 01 09.
Article in English | MEDLINE | ID: mdl-30634469

ABSTRACT

Crohn's disease is characterized by abnormal ileal colonization by adherent-invasive E. coli (AIEC) and expansion of mesenteric adipose tissue. This study assessed the preventive effect of spontaneous physical activity (PA) on the gut-adipose tissue in a mouse model that mimics Crohn's disease susceptibility. Thirty-five CEABAC10 male mice performed spontaneous PA (wheel group; n = 24) or not (controls; n = 11) for 12 weeks. At week 12, mice were orally challenged with the AIEC LF82 strain for 6 days. Body composition, glycaemic control, intestinal permeability, gut microbiota composition, and fecal short-chain fatty acids were assessed in both groups. Animals were fed a high fat/high sugar diet throughout the study. After exposure to AIEC, mesenteric adipose tissue weight was lower in the wheel group. Tight junction proteins expression increased with spontaneous PA, whereas systemic lipopolysaccharides were negatively correlated with the covered distance. Bifidobacterium and Lactobacillus decreased in controls, whereas Oscillospira and Ruminococcus increased in the wheel group. Fecal propionate and butyrate were also higher in the wheel group. In conclusion, spontaneous physical activity promotes healthy gut microbiota composition changes and increases short-chain fatty acids in CEABAC10 mice fed a Western diet and exposed to AIEC to mimic Crohn's disease.


Subject(s)
Adipose Tissue/metabolism , Crohn Disease/prevention & control , Intestines/microbiology , Physical Exertion , Animals , Bacterial Adhesion , Crohn Disease/microbiology , Disease Models, Animal , Disease Susceptibility , Escherichia coli/pathogenicity , Escherichia coli Infections/metabolism , Fatty Acids, Volatile/metabolism , Female , Gastrointestinal Microbiome , Glucose/metabolism , Male , Mice , Mice, Transgenic
10.
Gut ; 67(3): 574-587, 2018 03.
Article in English | MEDLINE | ID: mdl-29141957

ABSTRACT

Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli Infections/therapy , Escherichia coli/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Adhesins, Escherichia coli/metabolism , Antigens, CD/metabolism , Bacterial Adhesion , Cell Adhesion Molecules/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Escherichia coli/physiology , Escherichia coli Infections/epidemiology , Fimbriae Proteins/metabolism , GPI-Linked Proteins/metabolism , Gastrointestinal Tract/immunology , Humans , Immunity, Innate/genetics , Immunity, Mucosal , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/genetics , Macrophages/immunology
11.
Int J Neuropsychopharmacol ; 18(3)2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25522398

ABSTRACT

BACKGROUND: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. METHODS: Mice lacking the 5-HT reuptake carrier (5-HTT(-/-)) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR-induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos-induced expression) levels. RESULTS: Although 5-HTT(-/-) mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR-mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR-mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT(-/-) mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT(-/-) mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR-like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT(-/-) mutants. CONCLUSIONS: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT(-/-) mice.


Subject(s)
Anxiety , Behavior, Animal/physiology , Brain/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin Plasma Membrane Transport Proteins/deficiency , Analysis of Variance , Animals , Anxiety/genetics , Anxiety/metabolism , Anxiety/pathology , Behavior, Animal/drug effects , Brain/drug effects , Disease Models, Animal , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Interpersonal Relations , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Receptor Agonists/pharmacology
12.
Pharmacol Biochem Behav ; 127: 15-20, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25316307

ABSTRACT

BACKGROUND: Using the R6/1 transgenic mouse model of Huntington's disease (HD), we have recently shown that acute administration with the dopamine-norepinephrine reuptake inhibitor bupropion was able to rescue depressive-like behaviours in female HD mice at 12weeks of age. OBJECTIVE: In this present study, we aimed to further investigate the dopamine system as well as specifically measure dopamine transporter (DAT) and D1 receptor function in female versus male R6/1 HD mice at a very early stage of the disease. METHODS: We assessed the effects of acute administration of bupropion and the dopamine D1 receptor agonist SKF-8129 on spontaneous locomotor activity in 8-week-old HD and wild-type (WT) mice. We also measured dopamine levels in striatum via high performance liquid chromatography (HPLC). RESULTS: We found that female (but not male) HD mice were hyposensitive to bupropion when compared to WT littermates. However, both female and male HD mice were less sensitive to SKF-81297 locomotor effects. We also found that striatal dopamine levels and dopamine turnover were reduced in HD animals, regardless of sex. CONCLUSION: Our present findings suggest that whereas only female HD mice exhibit an impaired response to bupropion, dopamine D1 receptor function is altered in both female and male HD animals. These data are the first in vivo evidence of impaired dopamine D1 receptor-dependent function in pre-motor symptomatic HD mice suggesting that this is a candidate target for early therapeutic interventions.


Subject(s)
Disease Models, Animal , Dopamine/metabolism , Huntington Disease/metabolism , Receptors, Dopamine D1/metabolism , Sex Characteristics , 3,4-Dihydroxyphenylacetic Acid/antagonists & inhibitors , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Dopamine Uptake Inhibitors/pharmacology , Dopamine Uptake Inhibitors/therapeutic use , Female , Huntington Disease/drug therapy , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Receptors, Dopamine D1/antagonists & inhibitors
13.
J Neurochem ; 131(5): 566-72, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25113583

ABSTRACT

Serotonin (5-HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5-HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT turnover by a 5-HT2C receptor agonist (RO 60-0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA-A or GABA-B receptors in mice. Neither the GABA-B receptor antagonist phaclofen nor the specific genetic ablation of either GABA-B1a or GABA-B1b subunits altered the inhibitory effect of RO 60-0175, although 5-HT turnover was markedly decreased in GABA-B1a knock-out mice in both basal and stress conditions. In contrast, the 5-HT2C receptor-mediated inhibition of 5-HT turnover was reduced by the GABA-A receptor antagonist bicuculline. However, a significant effect of 5-HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA-A receptors. It can be inferred that non-α3 subunit-containing GABA-A receptors, but not GABA-B receptors, mediate the 5-HT2C -induced inhibition of stress-induced increase in hippocampal 5-HT turnover in mice.


Subject(s)
GABA Agents/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, GABA/genetics , Stress, Psychological/genetics , Stress, Psychological/metabolism , Animals , Disease Models, Animal , Ethylamines/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Hydroxyindoleacetic Acid/metabolism , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, GABA/deficiency , Serotonin/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/pathology
14.
PLoS One ; 9(7): e102027, 2014.
Article in English | MEDLINE | ID: mdl-25019623

ABSTRACT

In humans, spinal cord lesions induce not only major motor and neurovegetative deficits but also severe neuropathic pain which is mostly resistant to classical analgesics. Better treatments can be expected from precise characterization of underlying physiopathological mechanisms. This led us to thoroughly investigate (i) mechanical and thermal sensory alterations, (ii) responses to acute treatments with drugs having patent or potential anti-allodynic properties and (iii) the spinal/ganglion expression of transcripts encoding markers of neuronal injury, microglia and astrocyte activation in rats that underwent complete spinal cord transection (SCT). SCT was performed at thoracic T8-T9 level under deep isoflurane anaesthesia, and SCT rats were examined for up to two months post surgery. SCT induced a marked hyper-reflexia at hindpaws and strong mechanical and cold allodynia in a limited (6 cm2) cutaneous territory just rostral to the lesion site. At this level, pressure threshold value to trigger nocifensive reactions to locally applied von Frey filaments was 100-fold lower in SCT- versus sham-operated rats. A marked up-regulation of mRNAs encoding ATF3 (neuronal injury) and glial activation markers (OX-42, GFAP, P2×4, P2×7, TLR4) was observed in spinal cord and/or dorsal root ganglia at T6-T11 levels from day 2 up to day 60 post surgery. Transcripts encoding the proinflammatory cytokines IL-1ß, IL-6 and TNF-α were also markedly but differentially up-regulated at T6-T11 levels in SCT rats. Acute treatment with ketamine (50 mg/kg i.p.), morphine (3-10 mg/kg s.c.) and tapentadol (10-20 mg/kg i.p.) significantly increased pressure threshold to trigger nocifensive reaction in the von Frey filaments test, whereas amitriptyline, pregabalin, gabapentin and clonazepam were ineffective. Because all SCT rats developed long lasting, reproducible and stable allodynia, which could be alleviated by drugs effective in humans, thoracic cord transection might be a reliable model for testing innovative therapies aimed at reducing spinal cord lesion-induced central neuropathic pain.


Subject(s)
Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/physiopathology , Spinal Cord Injuries/complications , Activating Transcription Factor 3/metabolism , Analysis of Variance , Animals , Cytokines/metabolism , Ganglia, Spinal/metabolism , Hot Temperature/adverse effects , Ketamine/therapeutic use , Male , Morphine/therapeutic use , Nerve Tissue Proteins/metabolism , Pain Measurement , Phenols/therapeutic use , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tapentadol
15.
Neurotox Res ; 25(2): 147-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23873578

ABSTRACT

Exercise improves the central nervous system (CNS) functions and is widely recommended for neurological patients with, e.g., Alzheimer's and Parkinson's disease (PD). However, exercise-induced neuroprotection is an open discussion. Here, the intranasal administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 65 mg/kg) caused death of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the striatum of C57BL/6 mice. 1-Methyl-4-phenylpyridinium, the active metabolite of MPTP, also inhibited complex-I activity of mitochondria isolated from the CNS of mice. However, 6 weeks of exercise on voluntary running wheels did not protect against nigrostriatal neurodegeneration or mitochondrial inhibition, suggesting that benefits of exercise for PD may not be associated with neuroprotection. The literature presents other candidates, such as neurotrophins or increased antioxidant defenses.


Subject(s)
MPTP Poisoning/prevention & control , Physical Conditioning, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , 1-Methyl-4-phenylpyridinium/administration & dosage , Administration, Intranasal , Animals , Corpus Striatum/chemistry , Corpus Striatum/drug effects , Dopamine/analysis , Dopamine Plasma Membrane Transport Proteins/analysis , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/enzymology , Mitochondria/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism
16.
PLoS One ; 8(4): e61700, 2013.
Article in English | MEDLINE | ID: mdl-23637888

ABSTRACT

Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.


Subject(s)
Apamin/pharmacology , Bee Venoms/pharmacology , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Acupuncture Points , Animals , Behavior, Animal/drug effects , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Exploratory Behavior/drug effects , MPTP Poisoning/prevention & control , Male , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
17.
Neurotox Res ; 24(2): 280-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23588969

ABSTRACT

The loss of nigral dopaminergic neurons in Parkinson's disease (PD) is believed to result from interactions between genetic susceptibility and environmental factors. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, the hybrid 129Sv-C57BL/6 parkin-deficient mice did not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to neurotoxicity induced by 6-hydroxydopamine (6-OHDA) or intraperitoneal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. We aimed to re-evaluate the role of parkin in a pure C57BL/6 background after an acute intranasal (i.n.) MPTP administration, a new route of toxin delivery to the brain that mimics environmental exposure to neurotoxins. We found that the deficiency of parkin gene modifies the D-amphetamine-induced locomotion in saline-treated animals. Intranasal MPTP induced Parkinsonism in parkin⁺/⁺ mice, through depletion of striatal dopamine, decreased number of dopaminergic neurons in the substantia nigra, and decreased D-amphetamine-induced hyperlocomotion. Additionally, the deletion of the parkin gene in a pure C57BL/6 background did not lead to increased vulnerability to i.n. MPTP-induced neurotoxicity. Moreover, the i.n. MPTP induced nigral astrogliosis predominantly in the pars reticulata in wild type and parkin⁻/⁻ mice. Taken together, these results showed that the absence of parkin did not modify the vulnerability of nigrostriatal dopaminergic pathway after i.n. MPTP intoxication, suggesting that independently of mouse strain, the endogenous parkin is not required for protection of this system. These findings also suggest that the development of familial parkin-linked PD is not associated with exposure to environmental factors that specifically affects the dopaminergic system.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Ubiquitin-Protein Ligases/deficiency , Administration, Intranasal , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Gene Deletion , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Ubiquitin-Protein Ligases/genetics
18.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23404338

ABSTRACT

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Subject(s)
Behavior, Animal/physiology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Adult , Aged , Animals , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Electrophysiology , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Transgenic , Middle Aged , Myotonic Dystrophy/complications , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Trinucleotide Repeat Expansion
19.
J Physiol ; 591(1): 41-55, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23045340

ABSTRACT

Psychiatric disorders such as depression and anxiety are reported in patients with Huntington's disease (HD). Recent studies suggest beneficial effects of environmental enrichment (EE) on HD progression possibly through the serotonergic system. We investigated the potential effectiveness of EE in correcting the affective-like phenotype of female R6/1 HD mice. In addition to a behavioural battery of tests assessing depression and anxiety-related endophenotypes, we recorded physiological measures, including body temperature regulation and defecation rate as indices of stress reactivity. Finally, following identification of changes in serotonin (5-HT) receptor gene expression we measured the function of 5-HT(1A) auto- and hetero-receptors. We found that 8-week-old female HD mice exhibited higher immobility time in the forced swimming test and a decreased preference for saccharin solution. EE did not correct those depressive-like behaviours but reduced anxiety-related measures in unconditioned approach/avoidance conflict situations. Defecation rate in a large open field and change in temperature during exposure to the tail suspension test were both enhanced in HD compared to wild-type animals. Despite the enhanced hypothermic response to the 5-HT(1A) receptor agonist 8-OH-DPAT exhibited by HD mice, we found a reduction in 5-HT(1A) receptor-mediated stimulation of [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and the hippocampus of HD animals. EE did not change 5-HT(1A) receptor function. Our data suggest that early EE has beneficial effects on the anxiety-like, but not on depression-like, behaviours in HD. This is the first evidence that these affective endophenotypes can be dissociated via this form of environmental stimulation. As 5-HT(1A) receptor dysfunction was not affected by EE, this receptor is unlikely to underlie the anxiety-related phenotype of HD. However, the specific regulatory role of the 5-HT(1A) autoreceptor in mediating depressive-like behaviour in HD remains to be elucidated. Interestingly, by comparing in vivo and in vitro results, our findings suggest that 8-OH-DPAT-induced hypothermia could be mediated by other targets besides the 5-HT(1A) autoreceptor, including hippocampal 5-HT(7) receptors.


Subject(s)
Environment , Huntington Disease/physiopathology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Anxiety/physiopathology , Behavior, Animal/physiology , Depression/physiopathology , Disease Models, Animal , Emotions/physiology , Female , Hypothermia/chemically induced , Mice , Mice, Transgenic , Serotonin 5-HT1 Receptor Agonists/pharmacology , Stress, Psychological
20.
Am J Physiol Lung Cell Mol Physiol ; 303(6): L500-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22797248

ABSTRACT

Decreasing the bioavailability of serotonin (5-HT) by inhibiting its biosynthesis may represent a useful adjunctive treatment of pulmonary hypertension (PH). We assessed this hypothesis using LP533401, which inhibits the rate-limiting enzyme tryptophan hydroxylase 1 (Tph1) expressed in the gut and lung, without inhibiting Tph2 expressed in neurons. Mice treated repeatedly with LP533401 (30-250 mg/kg per day) exhibited marked 5-HT content reductions in the gut, lungs, and blood, but not in the brain. After a single LP533401 dose (250 mg/kg), lung and gut 5-HT contents decreased by 50%, whereas blood 5-HT levels remained unchanged, suggesting gut and lung 5-HT synthesis. Treatment with the 5-HT transporter (5-HTT) inhibitor citalopram decreased 5-HT contents in the blood and lungs but not in the gut. In transgenic SM22-5-HTT+ mice, which overexpress 5-HTT in smooth muscle cells and spontaneously develop PH, 250 mg/kg per day LP533401 or 10 mg/kg per day citalopram for 21 days markedly reduced lung and blood 5-HT levels, right ventricular (RV) systolic pressure, RV hypertrophy, distal pulmonary artery muscularization, and vascular Ki67-positive cells (P < 0.001). Combined treatment with both drugs was more effective in improving PH-related hemodynamic parameters than either drug alone. LP533401 or citalopram treatment partially prevented PH development in wild-type mice exposed to chronic hypoxia. Lung and blood 5-HT levels were lower in hypoxic than in normoxic mice and decreased further after LP533401 or citalopram treatment. These results provide proof of concept that inhibiting Tph1 may represent a new therapeutic strategy for human PH.


Subject(s)
Citalopram/pharmacology , Duodenum/metabolism , Hypertension, Pulmonary/prevention & control , Lung/drug effects , Pyrimidines/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/metabolism , Animals , Duodenum/drug effects , Hypoxia/physiopathology , Mice , Mice, Inbred C57BL , Serotonin/biosynthesis , Serotonin/blood , Serotonin Plasma Membrane Transport Proteins/biosynthesis , Tryptophan Hydroxylase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL