Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Genes (Basel) ; 15(5)2024 05 17.
Article in English | MEDLINE | ID: mdl-38790264

ABSTRACT

Primary cutaneous lymphomas (PCLs) are a heterogeneous group of lymphoproliferative disorders caused by the accumulation of neoplastic T or B lymphocytes in the skin. Sézary syndrome (SS) is an aggressive and rare form of cutaneous T cell lymphoma (CTCL) characterized by an erythroderma and the presence of atypical cerebriform T cells named Sézary cells in skin and blood. Most of the available treatments for SS are not curative, which means there is an urgent need for the development of novel efficient therapies. Recently, targeting cancer metabolism has emerged as a promising strategy for cancer therapy. This is due to the accumulating evidence that metabolic reprogramming highly contributes to tumor progression. Genes play a pivotal role in regulating metabolic processes, and alterations in these genes can disrupt the delicate balance of metabolic pathways, potentially contributing to cancer development. In this review, we discuss the importance of targeting energy metabolism in tumors and the currently available data on the metabolism of Sézary cells, paving the way for potential new therapeutic approaches aiming to improve clinical outcomes for patients suffering from SS.


Subject(s)
Sezary Syndrome , Skin Neoplasms , Humans , Sezary Syndrome/metabolism , Sezary Syndrome/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Energy Metabolism , Animals
2.
Biogerontology ; 25(2): 279-288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37917220

ABSTRACT

Aging is the decline of physiological capabilities required for life maintenance and reproduction over time. The human immune cells, including T-cells lymphocytes, undergo dramatic aging-related changes, including those related to telomeres and telomerase. It was demonstrated that telomeres and telomerase play crucial roles in T-cell differentiation, aging, and diseases, including a well-documented link between short telomeres and telomerase activation demonstrated in several T-cells malignancies. Herein, we provide a comprehensive review of the literature regarding T-cells' telomeres and telomerase in health and age related-diseases.


Subject(s)
Neoplasms , Telomerase , Humans , Telomerase/genetics , Aging/physiology , T-Lymphocytes/metabolism , Telomere
3.
Genes (Basel) ; 14(2)2023 02 08.
Article in English | MEDLINE | ID: mdl-36833366

ABSTRACT

As a major cancer hallmark, there is a sustained interest in understanding the telomerase contribution to carcinogenesis in order to therapeutically target this enzyme. This is particularly relevant in primary cutaneous T-cell lymphomas (CTCL), a malignancy showing telomerase dysregulation with few investigative data available. In CTCL, we examined the mechanisms involved in telomerase transcriptional activation and activity regulation. We analyzed 94 CTCL patients from a Franco-Portuguese cohort, as well as 8 cell lines, in comparison to 101 healthy controls. Our results showed that not only polymorphisms (SNPs) located at the promoter of human telomerase reverse transcriptase (hTERT) gene (rs2735940 and rs2853672) but also an SNP located within the coding region (rs2853676) could influence CTCL occurrence. Furthermore, our results sustained that the post-transcriptional regulation of hTERT contributes to CTCL lymphomagenesis. Indeed, CTCL cells present a different pattern of hTERT spliced transcripts distribution from the controls, mostly marked by an increase in the hTERT ß+ variants proportion. This increase seems to be associated with CTCL development and progression. Through hTERT splicing transcriptome modulation with shRNAs, we observed that the decrease in the α-ß+ transcript induced a decrease in the cell proliferation and tumorigenic capacities of T-MF cells in vitro. Taken together, our data highlight the major role of post-transcriptional mechanisms regulating telomerase non canonical functions in CTCL and suggest a new potential role for the α-ß+ hTERT transcript variant.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Telomerase , Humans , Cell Line , Gene Expression Regulation , Promoter Regions, Genetic , Telomerase/genetics
4.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38256866

ABSTRACT

The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines 12 and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines 13 are reported here in six steps starting from various halogeno-quinazoline-2,4-(1H,3H)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines 12b, 12f, and 12i displayed the most interesting antiproliferative activities against six human cancer cell lines. In the series of quinoline derivatives, 6-phenyl-bis(3-dimethylaminopropyl)aminomethylphenylquinoline 13a proved to be the most active. G-quadruplexes (G4) stacked non-canonical nucleic acid structures found in specific G-rich DNA, or RNA sequences in the human genome are considered as potential targets for the development of anticancer agents. Then, as small aza-organic heterocyclic derivatives are well known to target and stabilize G4 structures, their ability to bind G4 structures have been determined through FRET melting, circular dichroism, and native mass spectrometry assays. Finally, telomerase inhibition ability has been also assessed using the MCF-7 cell line.

5.
Cells ; 11(24)2022 12 16.
Article in English | MEDLINE | ID: mdl-36552862

ABSTRACT

Tissue engineering strategies aim at characterizing and at optimizing the cellular component that is combined with biomaterials, for improved tissue regeneration. Here, we present the immunoMap of apical papilla, the native tissue from which SCAPs are derived. We characterized stem cell niches that correspond to a minority population of cells expressing Mesenchymal stromal/Stem Cell (CD90, CD105, CD146) and stemness (SSEA4 and CD49f) markers as well as endothelial cell markers (VWF, CD31). Based on the colocalization of TKS5 and cortactin markers, we detected migration-associated organelles, podosomes-like structures, in specific regions and, for the first time, in association with stem cell niches in normal tissue. From six healthy teenager volunteers, each with two teeth, we derived twelve cell banks, isolated and amplified under 21 or 3% O2. We confirmed a proliferative advantage of all banks when cultured under 3% versus 21% O2. Interestingly, telomerase activity was similar to that of the highly proliferative hiPSC cell line, but unrelated to O2 concentration. Finally, SCAPs embedded in a thixotropic hydrogel and implanted subcutaneously in immunodeficient mice were protected from cell death with a slightly greater advantage for cells preconditioned at 3% O2.


Subject(s)
Mesenchymal Stem Cells , Stem Cells , Animals , Mice , Cells, Cultured , Cell Differentiation , Oxygen/metabolism
6.
Soins ; 67(866): 14-16, 2022 Jun.
Article in French | MEDLINE | ID: mdl-36127013

ABSTRACT

The introduction of advanced practice nurses in France is recent. It requires the development of partnerships from the training stage onwards, in order to promote the integration of these new professionals in the field. In this sense, the university and the university hospital of Bordeaux, in Gironde, have undertaken joint actions.


Subject(s)
Advanced Practice Nursing , France , Humans , Universities
7.
Genes (Basel) ; 13(3)2022 03 18.
Article in English | MEDLINE | ID: mdl-35328092

ABSTRACT

Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA's roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.


Subject(s)
Lymphoma, T-Cell, Cutaneous , RNA, Long Noncoding , Down-Regulation , Humans , Lymphoma, T-Cell, Cutaneous/genetics , RNA, Long Noncoding/genetics , Telomere/genetics , Up-Regulation
8.
Cancer Gene Ther ; 29(5): 437-444, 2022 05.
Article in English | MEDLINE | ID: mdl-35256752

ABSTRACT

Rnd3/RhoE is an atypical Rho GTPase family member, known to be deregulated in many types of cancer. Previously, we showed that RND3 expression is downregulated in hepatocellular carcinoma (HCC) cell lines and tissues. In cancer cells, Rnd3 is involved in the regulation of cell proliferation and cell invasion. The implication of Rnd3 in HCC invasion was importantly studied whereas its role in cell growth needs further investigation. Thus, in this work, we aimed to better understand the impact of Rnd3 on tumor hepatocyte proliferation. Our results indicate that the silencing of RND3 induces a cell growth arrest both in vitro in 2D and 3D culture conditions and in vivo in tumor xenografts. The growth alteration after RND3 silencing in HCC cells is not due to an increase of cell death but to the induction of senescence. This RND3 knockdown-mediated phenomenon is dependent on the decrease of hTERT expression. Interestingly, after re-expression of RND3, these cells are able to bypass senescence and regain the ability to proliferate, with a re-expression of hTERT. Given that a low expression of Rnd3 is linked to the presence of satellite nodules in HCC, the transient senescence state observed might play a role in cancer progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Liver Neoplasms/genetics , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
9.
Mol Oncol ; 16(9): 1931-1946, 2022 05.
Article in English | MEDLINE | ID: mdl-33715271

ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are telomerase-positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re-expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re-expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene-specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from -650 to -150 bp and a hypomethylated proximal region from -150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5-azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Telomerase , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Lymphoma, T-Cell, Cutaneous/genetics , Promoter Regions, Genetic/genetics , Telomerase/genetics , Telomerase/metabolism
10.
Front Oncol ; 11: 775253, 2021.
Article in English | MEDLINE | ID: mdl-34765562

ABSTRACT

Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphomas (CTCL) in which the human Telomerase Reverse Transcriptase (hTERT) gene is re-expressed. Current available treatments do not provide long-term response. We previously reported that Histone deacetylase inhibitors (HDACi, romidespin and vorinostat) and a DNA methyltransferase inhibitor (DNMTi, 5-azacytidine) can reduce hTERT expression without altering the methylation level of hTERT promoter. Romidepsin and vorinostat are approved for CTCL treatment, while 5-azacytidine is approved for the treatment of several hematological disorders, but not for CTCL. Here, using the soft agar assay, we analyzed the functional effect of the aforementioned epidrugs on the clonogenic capacities of Sézary cells. Our data revealed that, besides hTERT downregulation, epidrugs' pressure reduced the proliferative and the tumor formation capacities in Sézary cells in vitro.

11.
Arch Pharm (Weinheim) ; 354(8): e2000450, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33852185

ABSTRACT

Current multiagent chemotherapy regimens have improved the cure rate in acute leukemia patients, but they are highly toxic and poorly efficient in relapsed patients. To improve the treatment approaches, new specific molecules are needed. The G-quadruplexes (G4s), which are noncanonical nucleic acid structures found in specific guanine-rich DNA or RNA, are involved in many cellular events, including control of gene expression. G4s are considered as targets for the development of anticancer agents. Heterocyclic molecules are well known to target and stabilize G4 structures. Thus, a new series of 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives (1a-i) was designed, synthesized, and evaluated against five human myeloid leukemia cell lines (K562, KU812, MV4-11, HL60, and U937). Their ability to stabilize various oncogene promoter G4 structures (c-MYC, BCL-2, and K-RAS) as well as the telomeric G4 was also determined through the fluorescence resonance energy transfer melting assay and native mass spectrometry. In addition, the more bioactive ligands 1g-i were tested for telomerase activity in HuT78 and MV4-11 protein extracts.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Phenanthrolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Design , Fluorescence Resonance Energy Transfer , G-Quadruplexes/drug effects , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/pathology , Ligands , Phenanthrolines/chemical synthesis , Phenanthrolines/chemistry , Structure-Activity Relationship , Telomerase/metabolism , U937 Cells
12.
Cancers (Basel) ; 13(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450826

ABSTRACT

Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of T cell lymphomas that primarily affect the skin. The most frequent forms of CTCL are mycosis fungoides and Sézary syndrome. Both are characterized by frequent recurrence, developing chronic conditions and high mortality with a lack of a curative treatment. In this study, we evaluated the effect of short-chain, cell-permeable C6 Ceramide (C6Cer) on CTCL cell lines and keratinocytes. C6Cer significantly reduced cell viability of CTCL cell lines and induced cell death via apoptosis and necrosis. In contrast, primary human keratinocytes and HaCaT keratinocytes were less affected by C6Cer. Both keratinocyte cell lines showed higher expressions of ceramide catabolizing enzymes and HaCaT keratinocytes were able to metabolize C6Cer faster and more efficiently than CTCL cell lines, which might explain the observed protective effects. Along with other existing skin-directed therapies, C6Cer could be a novel well-tolerated drug for the topical treatment of CTCL.

13.
Blood Rev ; 48: 100782, 2021 07.
Article in English | MEDLINE | ID: mdl-33229141

ABSTRACT

Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.


Subject(s)
Lymphoma/diagnosis , Lymphoma/therapy , Chromatin/genetics , Chromatin/metabolism , Combined Modality Therapy , DNA Methylation , Disease Management , Disease Susceptibility , Epigenesis, Genetic/drug effects , Epigenomics/methods , Gene Expression Regulation, Neoplastic/drug effects , Histone Code/drug effects , Histones/metabolism , Humans , Lymphoma/genetics , Lymphoma/mortality , Treatment Outcome
14.
Mol Oncol ; 14(6): 1310-1326, 2020 06.
Article in English | MEDLINE | ID: mdl-32239597

ABSTRACT

Telomerase (hTERT) reactivation and sustained expression is a key event in the process of cellular transformation. Therefore, the identification of the mechanisms regulating hTERT expression is of great interest for the development of new anticancer therapies. Although the epigenetic state of hTERT gene promoter is important, we still lack a clear understanding of the mechanisms by which epigenetic changes affect hTERT expression. Retinoids are well-known inducers of granulocytic maturation in acute promyelocytic leukemia (APL). We have previously shown that retinoids repressed hTERT expression in the absence of maturation leading to growth arrest and cell death. Exploring the mechanisms of this repression, we showed that transcription factor binding was dependent on the epigenetic status of hTERT promoter. In the present study, we used APL cells lines and publicly available datasets from APL patients to further investigate the integrated epigenetic events that promote hTERT promoter transition from its silent to its active state, and inversely. We showed, in APL patients, that the methylation of the distal domain of hTERT core promoter was altered and correlated with the outcome of the disease. Further studies combining complementary approaches carried out on APL cell lines highlighted the significance of a domain outside the minimal promoter, localized around 5 kb upstream from the transcription start site, in activating hTERT. This domain is characterized by DNA hypomethylation and H3K4Me3 deposition. Our findings suggest a cooperative interplay between hTERT promoter methylation, chromatin accessibility, and histone modifications that force the revisiting of previously proposed concepts regarding hTERT epigenetic regulation. They represent, therefore, a major advance in predicting sensitivity to retinoid-induced hTERT repression and, more generally, in the potential development of therapies targeting hTERT expression in cancers.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Leukemic , Histone Code/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Telomerase/genetics , Tretinoin/therapeutic use , Cell Line, Tumor , Chromatin/metabolism , Cluster Analysis , CpG Islands/genetics , Epigenesis, Genetic/drug effects , Genetic Loci , Genome, Human , Humans , Nucleosomes/drug effects , Nucleosomes/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Telomerase/metabolism , Tretinoin/pharmacology
15.
Cancer Med ; 9(9): 3153-3162, 2020 05.
Article in English | MEDLINE | ID: mdl-32142223

ABSTRACT

BACKGROUND: Telomere shortening is linked to a range of different human diseases, hence reliable measurement methods are needed to uncover such associations. Among the plethora of telomere length measurement methods, qPCR is reported as easy to conduct and a cost-effective approach to study samples with low DNA amounts. METHODS: Cancer cells' telomere length was evaluated by relative and absolute qPCR methods. RESULTS: Robust and reproducible telomere length measurements were optimized taking into account a careful reference gene selection and by knowing the cancer cells ploidy. qPCR data were compared to "gold standard" measurement from terminal restriction fragment (TRF). CONCLUSIONS: Our study provides guidance and recommendations for accurate telomere length measurement by qPCR in cancer cells, taking advantage of our expertise in telomere homeostasis investigation in primary cutaneous T-cell lymphomas. Furthermore, our data emphasize the requirement of samples with both, high DNA quality and high tumor cells representation.


Subject(s)
Leukocytes, Mononuclear/pathology , Lymphoma, Large-Cell, Anaplastic/diagnosis , Real-Time Polymerase Chain Reaction/methods , Schizophrenia/diagnosis , Skin Neoplasms/diagnosis , Telomere Homeostasis/genetics , Aged , Aged, 80 and over , Apoptosis , Case-Control Studies , Cell Proliferation , Humans , Leukocytes, Mononuclear/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Middle Aged , Schizophrenia/blood , Schizophrenia/genetics , Skin Neoplasms/genetics , Tumor Cells, Cultured
17.
PLoS One ; 12(3): e0173171, 2017.
Article in English | MEDLINE | ID: mdl-28301507

ABSTRACT

Recent massive parallel sequencing data have evidenced the genetic diversity and complexity of Sézary syndrome mutational landscape with TP53 alterations being the most prevalent genetic abnormality. We analyzed a cohort of 35 patients with SS and a control group of 8 patients with chronic inflammatory dermatoses. TP53 status was analyzed at different clinical stages especially in 9 patients with a past-history of mycosis fungoides (MF), coined secondary SS. TP53 mutations were only detected in 10 patients with either primary or secondary SS (29%) corresponding to point mutations, small insertions and deletions which were unique in each case. Interestingly, TP53 mutations were both detected in sequential unselected blood mononuclear cells and in skin specimens. Cytogenetic analysis of blood specimens of 32 patients with SS showed a TP53 deletion in 27 cases (84%). Altogether 29 out of 35 cases exhibited TP53 mutation and/or deletion (83%). No difference in prognosis was observed according to TP53 status while patients with secondary SS had a worse prognosis than patients with primary SS. Interestingly, patients with TP53 alterations displayed a younger age and the presence of TP53 alteration at initial diagnosis stage supports a pivotal oncogenic role for TP53 mutation in SS as well as in erythrodermic MF making TP53 assessment an ancillary method for the diagnosis of patients with erythroderma as patients with inflammatory dermatoses did not display TP53 alteration.


Subject(s)
Dermatitis, Exfoliative/complications , Genes, p53 , Sezary Syndrome/genetics , Skin Neoplasms/genetics , Aged , Aged, 80 and over , Cohort Studies , DNA Copy Number Variations , Female , Flow Cytometry , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Polymorphism, Single Nucleotide , Sezary Syndrome/complications , Skin Neoplasms/complications
18.
Molecules ; 23(1)2017 Dec 30.
Article in English | MEDLINE | ID: mdl-29301210

ABSTRACT

G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 µM concentration for the most potent ligand 1c. The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , G-Quadruplexes , Pyridines/chemical synthesis , Pyridines/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Cell Survival/drug effects , Drug Design , HL-60 Cells , Humans , K562 Cells , Ligands , Protein Binding , Structure-Activity Relationship , Telomerase/antagonists & inhibitors
19.
Genes (Basel) ; 7(9)2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27618103

ABSTRACT

Telomerase expression and telomere maintenance are critical for cell proliferation and survival, and they play important roles in development and cancer, including hematological malignancies. Transcriptional regulation of the rate-limiting subunit of human telomerase reverse transcriptase gen (hTERT) is a complex process, and unveiling the mechanisms behind its reactivation is an important step for the development of diagnostic and therapeutic applications. Here, we review the main mechanisms of telomerase activation and the associated hematologic malignancies.

20.
Oncotarget ; 7(42): 68734-68748, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27626696

ABSTRACT

Monoallelic 6p25.3 rearrangements associated with DUSP22 (Dual Specificity Phosphatase 22) gene silencing have been reported in CD30+ peripheral T-cell lymphomas (PTCL), mostly with anaplastic morphology and of cutaneous origin. However, the mechanism of second allele silencing and the putative tumor suppressor function of DUSP22 have not been investigated so far. Here, we show that the presence, in most individuals, of an inactive paralog hampers genetic and epigenetic evaluation of the DUSP22 gene. Identification of DUSP22-specific single-nucleotide polymorphisms haplotypes and fluorescence in situ hybridization and epigenetic characterization of the paralog status led us to develop a comprehensive strategy enabling reliable identification of DUSP22 alterations. We showed that one cutaneous anaplastic large T-cell lymphomas (cALCL) case with monoallelic 6p25.3 rearrangement and DUSP22 silencing harbored exon 1 somatic mutations associated with second allele inactivation. Another cALCL case carried an intron 1 somatic splice site mutation with predicted deleterious exon skipping effect. Other tested PTCL cases with 6p25.3 rearrangement exhibited neither mutation nor deletion nor methylation accounting for silencing of the non-rearranged DUSP22 allele, thus inactivated by a so far unknown mechanism. We also characterized the expression status of four DUSP22 splice variants and found that they are all silenced in cALCL cases with 6p25.3 breakpoints. We finally showed that restoring expression of the physiologically predominant isoform in DUSP22-deficient malignant T cells inhibits cellular expansion by stimulating apoptosis and impairs soft agar clonogenicity and tumorigenicity. This study therefore shows that DUSP22 behaves as a tumor suppressor gene in PTCL.


Subject(s)
Dual-Specificity Phosphatases/genetics , Lymphoma, T-Cell/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics , Polymorphism, Single Nucleotide , Tumor Suppressor Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alternative Splicing , Amino Acid Sequence , Base Sequence , Chromosomes, Human, Pair 6/genetics , DNA Methylation , Dual-Specificity Phosphatases/metabolism , Female , Gene Rearrangement , Humans , In Situ Hybridization, Fluorescence , Lymphoma, Large-Cell, Anaplastic/enzymology , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell, Cutaneous/enzymology , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Peripheral/embryology , Lymphoma, T-Cell, Peripheral/genetics , Male , Middle Aged , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mutation , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL