Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med ; 4(6): 353-360.e2, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37105176

ABSTRACT

BACKGROUND: Post-mRNA vaccination-associated cardiac complication is a rare but life-threatening adverse event. Its risk has been well balanced by the benefit of vaccination-induced protection against severe COVID-19. As the rate of severe COVID-19 has consequently declined, future booster vaccination to sustain immunity, especially against infection with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, may encounter benefit-risk ratios that are less favorable than at the start of the COVID-19 vaccination campaign. Understanding the pathogenesis of rare but severe vaccine-associated adverse events to minimize its risk is thus urgent. METHODS: Here, we report a serendipitous finding of a case of cardiac complication following a third shot of COVID-19 mRNA vaccine. As this case was enrolled in a cohort study, pre-vaccination and pre-symptomatic blood samples were available for genomic and multiplex cytokine analyses. FINDINGS: These analyses revealed the presence of subclinical chronic inflammation, with an elevated expression of RNASE2 at pre-booster baseline as a possible trigger of an acute-on-chronic inflammation that resulted in the cardiac complication. RNASE2 encodes for the ribonuclease RNase2, which cleaves RNA at the 3' side of uridine, which may thus remove the only Toll-like receptor (TLR)-avoidance safety feature of current mRNA vaccines. CONCLUSIONS: These pre-booster and pre-symptomatic gene and cytokine expression data provide unique insights into the possible pathogenesis of vaccine-associated cardiac complication and suggest the incorporation of additional nucleoside modification for an added safety margin. FUNDING: This work was funded by the NMRC Open Fund-Large Collaborative Grant on Integrated Innovations on Infectious Diseases (OFLCG19May-0034).


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , Cohort Studies , COVID-19/prevention & control , SARS-CoV-2/genetics , mRNA Vaccines , Cytokines , Inflammation
2.
Cell ; 184(25): 6067-6080.e13, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34852238

ABSTRACT

The human monoclonal antibody (HmAb) C10 potently cross-neutralizes Zika virus (ZIKV) and dengue virus. Analysis of antibody fragment (Fab) C10 interactions with ZIKV and dengue virus serotype 2 (DENV2) particles by cryoelectron microscopy (cryo-EM) and amide hydrogen/deuterium exchange mass spectrometry (HDXMS) shows that Fab C10 binding decreases overall ZIKV particle dynamics, whereas with DENV2, the same Fab causes increased dynamics. Testing of different Fab C10:DENV2 E protein molar ratios revealed that, at higher Fab ratios, especially at saturated concentrations, the Fab enhanced viral dynamics (detected by HDXMS), and observation under cryo-EM showed increased numbers of distorted particles. Our results suggest that Fab C10 stabilizes ZIKV but that with DENV2 particles, high Fab C10 occupancy promotes E protein dimer conformational changes leading to overall increased particle dynamics and distortion of the viral surface. This is the first instance of a broadly neutralizing antibody eliciting virus-specific increases in whole virus particle dynamics.


Subject(s)
Antibodies, Neutralizing , Dengue Virus , Dengue , Viral Envelope Proteins , Zika Virus Infection , Zika Virus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Cross Reactions , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/physiology , Humans , Protein Binding , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology
3.
PLoS Pathog ; 17(2): e1009331, 2021 02.
Article in English | MEDLINE | ID: mdl-33621239

ABSTRACT

Different strains within a dengue serotype (DENV1-4) can have smooth, or "bumpy" surface morphologies with different antigenic characteristics at average body temperature (37°C). We determined the neutralizing properties of a serotype cross-reactive human monoclonal antibody (HMAb) 1C19 for strains with differing morphologies within the DENV1 and DENV2 serotypes. We mapped the 1C19 epitope to E protein domain II by hydrogen deuterium exchange mass spectrometry, cryoEM and molecular dynamics simulations, revealing that this epitope is likely partially hidden on the virus surface. We showed the antibody has high affinity for binding to recombinant DENV1 E proteins compared to those of DENV2, consistent with its strong neutralizing activities for all DENV1 strains tested regardless of their morphologies. This finding suggests that the antibody could out-compete E-to-E interaction for binding to its epitope. In contrast, for DENV2, HMAb 1C19 can only neutralize when the epitope becomes exposed on the bumpy-surfaced particle. Although HMAb 1C19 is not a suitable therapeutic candidate, this study with HMAb 1C19 shows the importance of choosing a high-affinity antibody that could neutralize diverse dengue virus morphologies for therapeutic purposes.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Dengue/immunology , Epitopes/immunology , Viral Envelope Proteins/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Dengue/virology , Dengue Virus/chemistry , Dengue Virus/metabolism , Epitopes/metabolism , Humans , Molecular Dynamics Simulation , Protein Conformation , Serogroup
4.
Nat Commun ; 11(1): 3112, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561757

ABSTRACT

Previous flavivirus (dengue and Zika viruses) studies showed largely spherical particles either with smooth or bumpy surfaces. Here, we demonstrate flavivirus particles have high structural plasticity by the induction of a non-spherical morphology at elevated temperatures: the club-shaped particle (clubSP), which contains a cylindrical tail and a disc-like head. Complex formation of DENV and ZIKV with Fab C10 stabilize the viruses allowing cryoEM structural determination to ~10 Å resolution. The caterpillar-shaped (catSP) Fab C10:ZIKV complex shows Fabs locking the E protein raft structure containing three E dimers. However, compared to the original spherical structure, the rafts have rotated relative to each other. The helical tail structure of Fab C10:DENV3 clubSP showed although the Fab locked an E protein dimer, the dimers have shifted laterally. Morphological diversity, including clubSP and the previously identified bumpy and smooth-surfaced spherical particles, may help flavivirus survival and immune evasion.


Subject(s)
Antibodies, Viral/metabolism , Dengue Virus/ultrastructure , Viral Envelope Proteins/metabolism , Zika Virus/ultrastructure , Aedes , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/immunology , Cell Line , Cryoelectron Microscopy , Dengue/immunology , Dengue/therapy , Dengue/virology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue Virus/metabolism , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mesocricetus , Protein Multimerization , Surface Properties , Viral Envelope Proteins/immunology , Viral Envelope Proteins/ultrastructure , Virus Attachment , Zika Virus/immunology , Zika Virus/metabolism , Zika Virus Infection
SELECTION OF CITATIONS
SEARCH DETAIL
...