Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 14: 1199097, 2023.
Article in English | MEDLINE | ID: mdl-37547211

ABSTRACT

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.

2.
Front Psychiatry ; 14: 1110525, 2023.
Article in English | MEDLINE | ID: mdl-36970280

ABSTRACT

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.

3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782467

ABSTRACT

Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.


Subject(s)
Autophagy/physiology , Hippocampus/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Autism Spectrum Disorder , Autistic Disorder , Deubiquitinating Enzyme CYLD , Female , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins , Nerve Tissue Proteins , Neurons/metabolism , Synapses/metabolism , Ubiquitin/metabolism , Ubiquitination
4.
Transl Oncol ; 13(3): 100745, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32092671

ABSTRACT

The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.

5.
Phytother Res ; 31(12): 1849-1857, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28921713

ABSTRACT

Chebulinic acid, an ellagitannin found in the fruits of Terminalia chebula, has been extensively used in traditional Indian system of medicine. It has shown to have various biological activities including antitumor activity. The present study aims to investigate the cytotoxic potential of chebulinic acid in human myeloid leukemia cells. Interestingly, chebulinic acid caused apoptosis of acute promyelocytic leukemia HL-60 and NB4 cells but not K562 cells. In vitro antitumor effects of chebulinic acid were investigated by using various acute myeloid leukemia cell lines. Chebulinic acid treatment to HL-60 and NB4 cells induced caspase activation, cleavage of poly(ADP-ribose) polymerase, DNA fragmentation, chromatin condensation, and changes in the mitochondrial membrane permeability. Additionally, inhibition of caspase activation drastically reduced the chebulinic acid-induced apoptosis of acute promyelocytic leukemia cells. Our data also demonstrate that chebulinic acid-induced apoptosis in HL-60 and NB4 cells involves activation of extracellular signal-regulated kinases, which, when inhibited with ERK inhibitor PD98059, mitigates the chebulinic acid-induced apoptosis. Taken together, our findings exhibit the selective potentiation of chebulinic acid-induced apoptosis in acute promyelocytic leukemia cells. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Apoptosis/drug effects , Biological Products/chemistry , Fruit/chemistry , Hydrolyzable Tannins/chemistry , Leukemia, Myeloid, Acute/drug therapy , Terminalia/chemistry , Humans , Leukemia, Myeloid, Acute/pathology
6.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1545-1553, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28578910

ABSTRACT

Granulocyte colony-stimulating factor receptor (G-CSFR) plays a crucial role in regulating myeloid cell survival, proliferation, and neutrophilic granulocyte precursor cells maturation. Previously, we demonstrated that Fbw7α negatively regulates G-CSFR and its downstream signaling through ubiquitin-proteasome mediated degradation. However, whether additional ubiquitin ligases for G-CSFR exist is not known. Identifying multiple E3 ubiquitin ligases for G-CSFR shall improve our understanding of activation and subsequent attenuation of G-CSFR signaling required for differentiation and proliferation. Here, for the first time we demonstrate that E6 associated protein (E6AP), an E3 ubiquitin ligase physically associates with G-CSFR and targets it for ubiquitin-mediated proteasome degradation and thereby attenuates its functions. We further show that E6AP promoted G-CSFR degradation leads to reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3) which is required for G-CSF dependent granulocytic differentiation. More importantly, our finding shows that E6AP also targets mutant form of G-SCFR (G-CSFR-T718), frequently observed in severe congenital neutropenia (SCN) patients that very often culminate to AML, however, at a quite slower rate than wild type G-CSFR. In addition, our data showed that knockdown of E6AP restores G-CSFR and its signaling thereby promoting granulocytic differentiation. Collectively, our data demonstrates that E6AP facilitates ubiquitination and subsequent degradation of G-CSFR leading to attenuation of its downstream signaling and inhibition of granulocytic differentiation.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/genetics , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Ubiquitin-Protein Ligases/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Gene Knockdown Techniques , Granulocytes/metabolism , Granulocytes/pathology , Humans , Myeloid Cells/metabolism , Myeloid Cells/pathology , Proteasome Endopeptidase Complex/genetics , Proteolysis , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
7.
Eur J Med Chem ; 109: 187-98, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26774925

ABSTRACT

In a quest to discover new drugs, we have synthesized a series of novel ß-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 µM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 µM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity.


Subject(s)
Antimalarials/chemistry , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Triazoles/chemistry , Triazoles/therapeutic use , Amino Alcohols/chemistry , Amino Alcohols/pharmacokinetics , Amino Alcohols/pharmacology , Amino Alcohols/therapeutic use , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Chlorocebus aethiops , Humans , MCF-7 Cells , Malaria, Falciparum/metabolism , Male , Mice , Rats, Sprague-Dawley , Triazoles/pharmacokinetics , Triazoles/pharmacology , Tumor Suppressor Protein p53/genetics , Up-Regulation/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...