Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2832: 205-212, 2024.
Article in English | MEDLINE | ID: mdl-38869797

ABSTRACT

One of the major plant stress level indicators is reactive oxygen species (ROS). They have been known to play a central role in regulating plant responses to various environmental stresses. This book chapter specifically covers abiotic stress induced by a drought hormone abscisic acid and biotic stress induced by Pseudomonas syringe DC3000 on single cell-type guard cells. We describe in detail the measurement of ROS production starting from sample preparation to data analysis by fluorescence intensity acquisition using ImageJ software. We discussed the problems faced while performing the experiment and addressed how to overcome them by providing specific guidelines to ensure high quality repeatable data.


Subject(s)
Arabidopsis , Reactive Oxygen Species , Stress, Physiological , Reactive Oxygen Species/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Abscisic Acid/metabolism , Pseudomonas syringae
2.
Nat Commun ; 14(1): 6848, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891163

ABSTRACT

Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , NAD/metabolism , Reactive Oxygen Species/metabolism , Plant Diseases , Gene Expression Regulation, Plant
3.
Methods Enzymol ; 683: 153-170, 2023.
Article in English | MEDLINE | ID: mdl-37087185

ABSTRACT

Multi-omics has gained momentum over the past few years especially in plant single cell-type analysis as they aim to understand cellular molecular networks across different levels of genetic information flow. For multi-omics sample preparation, molecular extractions performed non-simultaneously create rooms for variation, inaccurate data, waste of limited samples, resources and labor. Here we optimized a protocol for 3-in-1 simultaneous extraction of RNA, metabolites, and proteins from the same single cell-type sample. We adapted a commercially available RNA kit with a few modifications to obtain high quality starting materials for sequencing and LC-MS/MS-based metabolomics and proteomics. RNAs are bound to the column, metabolites were extracted in a polar solvent and proteins are precipitated using acetone. This creates an all-in-one workflow using a standard RNA kit. Little training is required to carry out this protocol as it is simple and easy to use. It may be used with a wide range of plant species and different amounts of starting materials, including single cells.


Subject(s)
Multiomics , Tandem Mass Spectrometry , Chromatography, Liquid , Proteomics/methods , Metabolomics/methods , Plants/genetics , Proteins , RNA
4.
Nature ; 609(7929): 986-993, 2022 09.
Article in English | MEDLINE | ID: mdl-36104568

ABSTRACT

Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.


Subject(s)
Arabidopsis , Glucose , Mechanistic Target of Rapamycin Complex 2 , Phosphatidylinositol 3-Kinases , Plant Development , Polycomb Repressive Complex 2 , Repressor Proteins , Signal Transduction , Arabidopsis/embryology , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Plant , Gene Silencing , Glucose/metabolism , Histones/chemistry , Histones/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Plant Development/genetics , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics
5.
Sci Rep ; 12(1): 13201, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915209

ABSTRACT

Scutellaria baicalensis is a well-studied medicinal plant belonging to the Lamiaceae family, prized for the unique 4'-deoxyflavones produced in its roots. In this study, three native species to the Americas, S. lateriflora, S. arenicola, and S. integrifolia were identified by DNA barcoding, and phylogenetic relationships were established with other economically important Lamiaceae members. Furthermore, flavone profiles of native species were explored. 4'-deoxyflavones including baicalein, baicalin, wogonin, wogonoside, chrysin and 4'-hydroxyflavones, scutellarein, scutellarin, and apigenin, were quantified from leaves, stems, and roots. Qualitative, and quantitative differences were identified in their flavone profiles along with characteristic tissue-specific accumulation. 4'-deoxyflavones accumulated in relatively high concentrations in root tissues compared to aerial tissues in all species except S. lateriflora. Baicalin, the most abundant 4'-deoxyflavone detected, was localized in the roots of S. baicalensis and leaves of S. lateriflora, indicating differential accumulation patterns between the species. S. arenicola and S. integrifolia are phylogenetically closely related with similar flavone profiles and distribution patterns. Additionally, the S. arenicola leaf flavone profile was dominated by two major unknown peaks, identified using LC-MS/MS to most likely be luteolin-7-O-glucuronide and 5,7,2'-trihydroxy-6-methoxyflavone 7-O-glucuronide. Collectively, results presented in this study suggest an evolutionary divergence of flavonoid metabolic pathway in the Scutellaria genus of Lamiaceae.


Subject(s)
Flavanones , Flavones , Scutellaria , Chromatography, Liquid , Flavanones/metabolism , Flavones/metabolism , Flavonoids/metabolism , Phylogeny , Plant Roots/metabolism , Scutellaria baicalensis/metabolism , Tandem Mass Spectrometry
6.
Sci Adv ; 8(12): eabm8435, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333566

ABSTRACT

Phosphorylation can quickly switch on/off protein functions. Here, we reported pre-mRNA processing 4 kinase A (PRP4KA), and its paralogs interact with Serrate (SE), a key factor in RNA processing. PRP4KA phosphorylates at least five residues of SE in vitro and in vivo. Hypophosphorylated, but not hyperphosphorylated, SE variants could readily rescue se phenotypes in vivo. Moreover, hypophosphorylated SE variants had stronger binding affinity to microprocessor component HYL1 and were more resistant to degradation by 20S proteasome than hyperphosphorylated counterparts. Knockdown of the kinases enhanced the accumulation of hypophosphorylated SE. However, the excessive SE interfered with the assembly and function of SE-scaffolded macromolecule complexes, causing the se-like defects in the mutant and wild-type backgrounds. Thus, phosphorylation of SE via PRP4KA can quickly clear accumulated SE to secure its proper amount. This study provides new insight into how protein phosphorylation regulates miRNA metabolism through controlling homeostasis of SE accumulation in plants.

7.
Sci Rep ; 11(1): 3524, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568694

ABSTRACT

During the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


Subject(s)
Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Leucine/metabolism , Methionine/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Glucosinolates/metabolism , Plastids/metabolism
8.
Curr Biol ; 29(22): 3778-3790.e8, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31679931

ABSTRACT

Cell death is a vital and ubiquitous process that is tightly controlled in all organisms. However, the mechanisms underlying precise cell death control remain fragmented. As an important shared module in plant growth, development, and immunity, Arabidopsis thaliana BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and somatic embryogenesis receptor kinase 4 (SERK4) redundantly and negatively regulate plant cell death. By deploying an RNAi-based genetic screen for bak1/serk4 cell death suppressors, we revealed that cyclic nucleotide-gated channel 20 (CNGC20) functions as a hyperpolarization-activated Ca2+-permeable channel specifically regulating bak1/serk4 cell death. BAK1 directly interacts with and phosphorylates CNGC20 at specific sites in the C-terminal cytosolic domain, which in turn regulates CNGC20 stability. CNGC19, the closest homolog of CNGC20 with a low abundance compared with CNGC20, makes a quantitative genetic contribution to bak1/serk4 cell death only in the absence of CNGC20, supporting the biochemical data showing homo- and heteromeric assembly of the CNGC20 and CNGC19 channel complexes. Transcripts of CNGC20 and CNGC19 are elevated in bak1/serk4 compared with wild-type plants, further substantiating a critical role of homeostasis of CNGC20 and CNGC19 in cell death control. Our studies not only uncover a unique regulation of ion channel stability by cell-surface-resident receptor kinase-mediated phosphorylation but also provide evidence for fine-tuning Ca2+ channel functions in maintaining cellular homeostasis by the formation of homo- and heterotetrameric complexes.


Subject(s)
Arabidopsis Proteins/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , Cell Death/genetics , Cyclic Nucleotide-Gated Cation Channels/physiology , Gene Expression Regulation, Plant/genetics , Homeostasis , Phosphorylation , Plant Cells/metabolism , Protein Kinases/physiology , Protein Serine-Threonine Kinases/physiology , Signal Transduction
9.
Front Plant Sci ; 10: 1202, 2019.
Article in English | MEDLINE | ID: mdl-31649689

ABSTRACT

Early age-related developmental senescence was observed in Arabidopsis cyp79B2/cyp79B3 double mutants that cannot produce indole-3-acetaldoxime (IAOx), the precursor to indole glucosinolates (IGs), camalexin and auxin. The early senescence phenotype was not observed when senescence was induced by darkness. The cyp79B2/cyp79B3 mutants had lower auxin levels, but did not display auxin-deficient phenotypes. Camalexin biosynthesis mutants senesced normally; however, IG transport and exosome-related pen1/pen3 double mutants displayed early senescence. The early senescence in pen1/pen3 mutants depended on salicylic acid and was not observed in pen1 or pen3 single mutants. Quantitation of IGs showed reduced levels in cyp79B2/cyp79B3 mutants, but unchanged levels in pen1/pen3, even though both of these double mutants display early senescence. We discuss how these genetic data provide evidence that IAOx metabolites are playing a protective role in leaf senescence that is dependent on proper trafficking by PEN1 and PEN3, perhaps via the formation of exosomes.

10.
Plant Mol Biol ; 101(3): 325-339, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31399934

ABSTRACT

KEY MESSAGE: Combining genetic engineering of MPK4 activity and quantitative proteomics, we established an in planta system that enables rapid study of MPK4 signaling networks and potential substrate proteins. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. The question of how a single protein modulates many distinct processes has spurred extensive research into the physiological outcomes resulting from genetic perturbation of MPK4. However, the mechanism by which MPK4 functions is still poorly understood due to limited data on the MPK4 networks including substrate proteins and downstream pathways. Here we introduce an experimental system that combines genetic engineering of kinase activity and quantitative proteomics to rapidly study the signaling networks of MPK4. First, we transiently expressed a constitutively active (MPK4CA) and an inactive (MPK4IN) version of a Brassica napus MPK4 (BnMPK4) in Nicotiana benthamiana leaves. Proteomics analysis revealed that BnMPK4 activation affects multiple pathways (e.g., metabolism, redox regulation, jasmonic acid biosynthesis and stress responses). Furthermore, BnMPK4 activation also increased protein phosphorylation in the phosphoproteome, from which putative MPK4 substrates were identified. Using protein kinase assay, we validated that a transcription factor TCP8-like (TCP8) and a PP2A regulatory subunit TAP46-like (TAP46) were indeed phosphorylated by BnMPK4. Taken together, we demonstrated the utility of proteomics and phosphoproteomics in elucidating kinase signaling networks and in identification of downstream substrates.


Subject(s)
Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Proteomics , Arabidopsis , Arabidopsis Proteins/metabolism , Brassica napus/enzymology , Genetic Engineering , MAP Kinase Signaling System , Phosphorylation , Plant Immunity , Plant Leaves/enzymology , Proteome , Signal Transduction , Nicotiana/enzymology
11.
Front Plant Sci ; 10: 618, 2019.
Article in English | MEDLINE | ID: mdl-31164896

ABSTRACT

Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other plant specialized metabolites, their presence does not directly affect the plant survival in terms of growth and development. However, specialized metabolites are essential to combat environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many pungent plants in the order of Brassicales. To date, more than 200 different GLS structures have been characterized and their distribution differs from species to species. GLSs co-exist with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone thiohydroximate-O-sulfonate, which rearranges to produce different degradation products. GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products constitute the GLS-myrosinase (GM) system ("mustard oil bomb"). This review discusses the cellular and subcellular organization of the GM system, its chemodiversity, and functions in different cell types. Although there are many studies on the functions of GLSs and/or myrosinases at the tissue and whole plant levels, very few studies have focused on different single cell types. Single cell type studies will help to reveal specific functions that are missed at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins; (2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase interaction with its interacting proteins, and how it regulates the degradation of GLSs and thus the biological functions (e.g., plant defense against pathogens). Future prospects may include targeted approaches for engineering/breeding of plants and crops in the cell type-specific manner toward enhanced plant defense and nutrition.

SELECTION OF CITATIONS
SEARCH DETAIL
...