Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 15(9): 681, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289348

ABSTRACT

Liver regeneration is an intricate pathophysiological process that has been a subject of great interest to the scientific community for many years. The capacity of liver regeneration is very critical for patients with liver diseases. Therefore, exploring the mechanisms of liver regeneration and finding good ways to improve it are very meaningful. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a member of newly identified neurotrophic factors (NTFs) family, extensively expresses in the liver and has demonstrated cytoprotective effects during ER stress and inflammation. However, the role of MANF in liver regeneration remains unclear. Here, we used hepatocyte-specific MANF knockout (MANFHep-/-) mice to investigate the role of MANF in liver regeneration after 2/3 partial hepatectomy (PH). Our results showed that MANF expression was up-regulated in a time-dependent manner, and the peak level of mRNA and protein appeared at 24 h and 36 h after 2/3 PH, respectively. Notably, MANF knockout delayed hepatocyte proliferation, and the peak proliferation period was delayed by 24 h. Mechanistically, our in vitro results showed that MANF physically interacts with LRP5 and ß-catenin, two essential components of Wnt/ß-catenin pathway. Specifically, as a cofactor, MANF binds to the extracellular segment of LRP5 to activate Wnt/ß-catenin signaling. On the other hand, MANF interacts with ß-catenin to stabilize cytosolic ß-catenin level and promote its nuclear translocation, which further enhance the Wnt/ß-catenin signaling. We also found that MANF knockout does not affect the c-Met/ß-catenin complex after 2/3 PH. In summary, our study confirms that MANF may serve as a novel hepatocyte factor that is closely linked to the activation of the Wnt/ß-catenin pathway via intracellular and extracellular targets.


Subject(s)
Cell Proliferation , Hepatectomy , Hepatocytes , Liver Regeneration , Mice, Knockout , Nerve Growth Factors , Wnt Signaling Pathway , beta Catenin , Liver Regeneration/physiology , Animals , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Hepatocytes/metabolism , beta Catenin/metabolism , Mice , Humans , Mice, Inbred C57BL , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Male , Liver/metabolism
2.
J Biol Chem ; 299(12): 105405, 2023 12.
Article in English | MEDLINE | ID: mdl-38229396

ABSTRACT

Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal ß-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed ß-cell compensation, is essential for maintaining normal maternal metabolism. ß-cell compensation culminates in the expansion of ß-cell mass and augmentation of ß-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, ß-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational ß-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How ß-cells compensate for pregnancy and what causes ß-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that ß-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to ß-cell compensation for pregnancy. We will provide mechanistic insights into ß-cell decompensation in the etiology of GDM.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Insulin-Secreting Cells , Female , Humans , Pregnancy , Blood Glucose/metabolism , Diabetes, Gestational/pathology , Glucose Tolerance Test , Insulin , Insulin-Secreting Cells/physiology
3.
Biomed Pharmacother ; 156: 113931, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411620

ABSTRACT

Hepatic fibrosis is a chronic inflammatory process with hepatic stellate cells (HSCs) activation. Peroxiredoxin 6 (PRDX6), a multifunctional protein, was reported to protect against liver injury induced by ischemia/reperfusion and high-fat diet. However, the effect of PRDX6 on hepatic fibrosis remains unclear. Male Sprague-Dawley rats were treated with carbon tetrachloride (CCl4) for 4-8 weeks to induce hepatic fibrosis. Here, we found that PRDX6 was mainly expressed in hepatocytes and significantly upregulated in CCl4-induced liver fibrosis. To clarify the impact of PRDX6 in hepatic fibrosis, we constructed a PRDX6 knockout (PRDX6-/-) rat model by using CRISPR/Cas9 method. We found that PRDX6 deficiency accelerated CCl4-induced liver fibrosis. Furthermore, we found that PRDX6 knockout promoted α-SMA expression in normal and fibrotic conditions, especially in hepatic fibrosis. PRDX6 knockout significantly upregulated Col1α1 and Col3α1 in fibrotic tissues. To explore the underlying mechanisms, we identified mesencephalic astrocyte-derived neurotrophic factor (MANF), a suppressor for hepatic fibrosis and NF-κB pathway, as an interacting protein of PRDX6. PRDX6 promoted MANF secretion by binding to the C-terminus of MANF, which did not depend on its peroxidase and PLA2 activities. Similarly, MANF increased PRDX6 protein level and promoted its secretion. Additionally, PRDX6 knockout increased p65 level either in cytoplasm or nuclei in HSCs under fibrotic condition. In conclusion, PRDX6 is an effective inhibitor for hepatic fibrosis through a non-enzymic dependent interacting with MANF, which will offer a potential target for hepatic fibrosis therapy.


Subject(s)
Hepatic Stellate Cells , Peroxiredoxin VI , Rats , Male , Animals , Hepatic Stellate Cells/metabolism , Peroxiredoxin VI/genetics , Peroxiredoxin VI/pharmacology , Rats, Sprague-Dawley , Fibrosis , Liver Cirrhosis/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism
4.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35700043

ABSTRACT

Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis, and fibrosis in mice and patients with NASH. Myeloid cell conditional FoxO1 knockout skewed macrophage polarization from proinflammatory M1 to the antiinflammatory M2 phenotype, accompanied by a reduction in macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1-knockout mice on a high-fat diet. When fed a NASH-inducing diet, myeloid cell FoxO1-knockout mice were protected from developing NASH, culminating in a reduction in hepatic inflammation, steatosis, and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward the M1 signature to perpetuate hepatic inflammation in NASH. FoxO1 appears to be a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.


Subject(s)
Forkhead Box Protein O1 , Non-alcoholic Fatty Liver Disease , Overnutrition , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Fibrosis , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Overnutrition/pathology
5.
Liver Int ; 41(3): 623-639, 2021 03.
Article in English | MEDLINE | ID: mdl-33064897

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) perturbations are novel subcellular effectors involved in the ischaemia-reperfusion injury. As an ER stress-inducible protein, mesencephalic astrocyte-derived neurotrophic factor (MANF) has been proven to be increased during ischaemic brain injury. However, the role of MANF in liver ischaemia reperfusion (I/R) injury has not yet been studied. METHODS: To investigate the role of MANF in the process of liver ischaemia-reperfusion, Hepatocyte-specific MANF knockout (MANFhep-/- ) mice and their wild-type (WT) littermates were used in our research. Mice partial (70%) warm hepatic I/R model was established by vascular occlusion. We detected the serum levels of MANF in both liver transplant patients and WT mice before and after liver I/R injury. Recombinant human MANF (rhMANF) was injected into the tail vein before 1 hour occlusion. AST, ALT and Suzuki score were used to evaluate the extent of I/R injury. OGD/R test was performed on primary hepatocytes to simulate IRI in vitro. RNA sequence and RT-PCR were used to detect the cellular signal pathway activation while MANF knockout. RESULTS: We found that MANF expression and secretion are dramatically up-regulated during hepatic I/R. Hepatocyte-specific MANF knockout aggravates the I/R injury through the over-activated ER stress. The systemic administration of rhMANF before ischaemia has the potential to ameliorate I/R-triggered UPR and liver injury. Further study showed that MANF deficiency activated ATF4/CHOP and JNK/c-JUN/CHOP pathways, and rhMANF inhibited the activation of the two proapoptotic pathways caused by MANF deletion. CONCLUSION: Collectively, our study unravels a previously unknown relationship among MANF, UPR and hepatic I/R injury.


Subject(s)
Endoplasmic Reticulum Stress , Nerve Growth Factors , Reperfusion Injury , Animals , Apoptosis , Astrocytes , Hepatocytes , Humans , Liver , Mice
6.
Oxid Med Cell Longev ; 2020: 9034864, 2020.
Article in English | MEDLINE | ID: mdl-32724497

ABSTRACT

Consumption of alcohol in immoderate quantity induces endoplasmic reticulum (ER) stress response (alcohol-induced ER stress). Mesencephalic astrocyte-derived neurotrophic factor (MANF), an ER stress-inducible protein, works as an evolutionarily conserved regulator of systemic and liver metabolic homeostasis. In this study, the effects of MANF on alcohol-induced liver injury were explored by using hepatocyte-specific MANF-knockout mice (MANF ΔHep) in a chronic-plus-binge alcohol feeding model. We found that alcohol feeding upregulated MANF expression and MANF ΔHep mice exhibited more severe liver injury with extra activated ER stress after alcohol feeding. In addition, we found that MANF deficiency activated iNOS and p65 and increased the production of NO and anti-inflammatory cytokines, which was further enhanced after alcohol treatment. Meanwhile, MANF deletion upregulated the levels of CYP2E1, 4-HNE, and MDA and downregulated the levels of GSH and SOD. These results indicate that MANF has potential protection on alcohol-induced liver injury, and the underlying mechanisms may be associated with meliorating the overactivated ER stress triggered by inflammation and oxidative stress via inhibiting and reducing NO/NF-κB and CYP2E1/ROS, respectively. Therefore, MANF might be a negative regulator in alcohol-induced ER stress and participate in the crosstalk between the NF-κB pathway and oxidative stress in the liver. Conclusions. This study identifies a specific role of MANF in alcohol-induced liver injury, which may provide a new approach for the treatment of ALI.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic/genetics , Nerve Growth Factors/therapeutic use , Animals , Humans , Male , Mice , Mice, Knockout , Nerve Growth Factors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL