Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7150, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168967

ABSTRACT

Despite the prevalent of hexagonal, tetragonal, and triangular pore structures in two-dimensional covalent organic frameworks (2D COFs), the pentagonal pores remain conspicuously absent. We herein present the Cairo pentagonal tessellated COFs, achieved through precisely chosen geometry and metrics of the linkers, resulting in unprecedented mcm topology. In each pentagonal structure, porphyrin units create four uniform sides around 15.5 Å with 90° angles, while tetrabiphenyl unit establish a bottom edge about 11.6 Å with 120° angles, aligning precisely with the criteria of Cairo Pentagon. According to the narrow bandgap and strong near-infrared (NIR) absorbance, as-synthesized COFs exhibit the efficient singlet oxygen (1O2) generation and photothermal conversion, resulting in NIR photothermal combined photodynamic therapy to guide cancer cell apoptosis. Mechanistic studies reveal that the good 1O2 production capability upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. The implementation of pentagonal Cairo tessellations in this work provides a promising strategy for diversifying COFs with new topologies, along with multimodal NIR phototherapy.


Subject(s)
Apoptosis , Infrared Rays , Photochemotherapy , Singlet Oxygen , Humans , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , Lipid Peroxidation , Cell Line, Tumor , Ferroptosis , Phototherapy/methods , Mice , Glutathione/chemistry , Glutathione/metabolism , Photosensitizing Agents/chemistry , Neoplasms/therapy , Neoplasms/metabolism
2.
Nat Commun ; 15(1): 5316, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909037

ABSTRACT

Circumventing the conventional two-electron oxygen reduction pathway remains a great problem in enhancing the efficiency of H2O2 photosynthesis. A promising approach to achieve outstanding photocatalytic activity involves the utilization of redox intermediates. Here, we engineer a polyimide aerogel photocatalyst with photoreductive carbonyl groups for non-sacrificial H2O2 production. Under photoexcitation, carbonyl groups on the photocatalyst surface are reduced, forming an anion radical intermediate. The produced intermediate is oxidized by O2 to produce H2O2 and subsequently restores the carbonyl group. The high catalytic efficiency is ascribed to a photocatalytic redox cycle mediated by the radical anion, which not only promotes oxygen adsorption but also lowers the energy barrier of O2 reduction reaction for H2O2 generation. An apparent quantum yield of 14.28% at 420 ± 10 nm with a solar-to-chemical conversion efficiency of 0.92% is achieved. Moreover, we demonstrate that a mere 0.5 m2 self-supported polyimide aerogel exposed to natural sunlight for 6 h yields significant H2O2 production of 34.3 mmol m-2.

3.
4.
Front Nutr ; 9: 819319, 2022.
Article in English | MEDLINE | ID: mdl-35614980

ABSTRACT

Global warming has prompted scientific communities to consider how to alleviate thermal stress in humans and animals. The present study assessed the supplementation of hsian-tsao extract (HTE) on thermal stress in Drosophila melanogaster and preliminarily explicated its possible physiological and molecular mechanisms. Our results indicated that the lethal time for 50% of female flies fed on HTE was significantly longer than that of male flies at the same heat stress temperature. Under thermal stress, the survival time of females was remarkably increased in the HTE addition groups compared to the non-addition group. Thermal hardening by acute exposure to 36°C for 30 min (9:00 to 9:30 a.m.) every day could significantly prolong the longevity of females. Without thermal hardening, HTE increased the antioxidant capacity of females under heat stress, accompanied by an increment of catalase (CAT) activity, and the inhibition for hydroxyl radicals (OH⋅) and superoxide anions (⋅O2 -). Superoxide dismutase (SOD) activity and the inhibition for ⋅O2 - was significantly affected by thermal hardening in the non-HTE addition groups, and significant differences were shown in CAT and SOD activities, and the inhibition for ⋅O2 - among groups with thermal hardening. After heat exposure, heat shock protein 70 (Hsp70) was only up-regulated in the group with high levels of added HTE compared with the group without and this was similar in the thermal hardening group. It was concluded that the heat stress-relieving ability of HTE might be partly due to the enhancement of enzymatic activities of SOD and CAT, and the inhibition for OH⋅ and ⋅O2 -. However, the expression levels of Hsp70 were not well related to thermal tolerance or heat survival.

5.
Chem Commun (Camb) ; 57(96): 13024-13027, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34807209

ABSTRACT

In this study, porous hierarchical bronze/anatase phase junction TiO2 assembled by ultrathin two-dimensional nanosheets was prepared by a novel, green and simple deep eutectic solvent-regulated strategy. Due to its structural features, the TiO2 sample exhibited enhanced photocatalytic activities for multiple kinds of antibiotics, including ofloxacin, ciprofloxacin and chloramphenicol.


Subject(s)
Anti-Bacterial Agents/chemistry , Chloramphenicol/chemistry , Ciprofloxacin/chemistry , Ofloxacin/chemistry , Titanium/chemistry , Catalysis , Particle Size , Photochemical Processes , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL