Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
MAbs ; 15(1): 2273449, 2023.
Article in English | MEDLINE | ID: mdl-37930310

ABSTRACT

Bispecific antibodies represent an increasingly large fraction of biologics in therapeutic development due to their expanded scope in functional capabilities. Asymmetric monovalent bispecific IgGs (bsIgGs) have the additional advantage of maintaining a native antibody-like structure, which can provide favorable pharmacology and pharmacokinetic profiles. The production of correctly assembled asymmetric monovalent bsIgGs, however, is a complex engineering endeavor due to the propensity for non-cognate heavy and light chains to mis-pair. Previously, we introduced the DuetMab platform as a general solution for the production of bsIgGs, which utilizes an engineered interchain disulfide bond in one of the CH1-CL domains to promote orthogonal chain pairing between heavy and light chains. While highly effective in promoting cognate heavy and light chain pairing, residual chain mispairing could be detected for specific combinations of Fv pairs. Here, we present enhancements to the DuetMab design that improve chain pairing and production through the introduction of novel electrostatic steering mutations at the CH1-CL interface with lambda light chains (CH1-Cλ). These mutations work together with previously established charge-pair mutations at the CH1-CL interface with kappa light chains (CH1-Cκ) and Fab disulfide engineering to promote cognate heavy and light chain pairing and enable the reliable production of bsIgGs. Importantly, these enhanced DuetMabs do not require engineering of the variable domains and are robust when applied to a panel of bsIgGs with diverse Fv sequences. We present a comprehensive biochemical, biophysical, and functional characterization of the resulting DuetMabs to demonstrate compatibility with industrial production benchmarks. Overall, this enhanced DuetMab platform substantially streamlines process development of these disruptive biotherapeutics.


Subject(s)
Antibodies, Bispecific , Antibodies, Bispecific/genetics , Static Electricity , Disulfides , Mutation , Immunoglobulin G/genetics
2.
Cell Rep ; 42(7): 112780, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37440409

ABSTRACT

Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , B-Lymphocytes , Antibodies, Viral , Vaccination
3.
Proc Natl Acad Sci U S A ; 119(28): e2204607119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35759653

ABSTRACT

Messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective at inducing protective immunity. However, weak antibody responses are seen in some individuals, and cellular correlates of immunity remain poorly defined, especially for B cells. Here we used unbiased approaches to longitudinally dissect primary antibody, plasmablast, and memory B cell (MBC) responses to the two-dose mRNA-1273 vaccine in SARS-CoV-2-naive adults. Coordinated immunoglobulin A (IgA) and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses but earlier and more intensely after dose 2. While antibody and B cell cellular responses were generally robust, they also varied within the cohort and decreased over time after a dose-2 peak. Both antigen-nonspecific postvaccination plasmablast frequency after dose 1 and their spike-specific counterparts early after dose 2 correlated with subsequent antibody levels. This correlation between early plasmablasts and antibodies remained for titers measured at 6 months after vaccination. Several distinct antigen-specific MBC populations emerged postvaccination with varying kinetics, including two MBC populations that correlated with 2- and 6-month antibody titers. Both were IgG-expressing MBCs: one less mature, appearing as a correlate after the first dose, while the other MBC correlate showed a more mature and resting phenotype, emerging as a correlate later after dose 2. This latter MBC was also a major contributor to the sustained spike-specific MBC response observed at month 6. Thus, these plasmablasts and MBCs that emerged after both the first and second doses with distinct kinetics are potential determinants of the magnitude and durability of antibodies in response to mRNA-based vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibody Formation , B-Lymphocytes , COVID-19 , RNA, Messenger , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , B-Lymphocytes/immunology , COVID-19/prevention & control , Humans , Immunity, Cellular , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , SARS-CoV-2/immunology , Vaccination
4.
Emerg Microbes Infect ; 10(1): 2016-2029, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651563

ABSTRACT

ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Immunization , Immunization Schedule , Immunogenicity, Vaccine , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus , Vaccination , Viral Load
5.
medRxiv ; 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34268520

ABSTRACT

SARS-CoV-2 mRNA vaccines are highly effective, although weak antibody responses are seen in some individuals with correlates of immunity that remain poorly understood. Here we longitudinally dissected antibody, plasmablast, and memory B cell (MBC) responses to the two-dose Moderna mRNA vaccine in SARS-CoV-2-uninfected adults. Robust, coordinated IgA and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses, but earlier and more intensely after dose two. Distinct antigen-specific MBC populations also emerged post-vaccination with varying kinetics. We identified antigen non-specific pre-vaccination MBC and post-vaccination plasmablasts after dose one and their spike-specific counterparts early after dose two that correlated with subsequent antibody levels. These baseline and response signatures can thus provide early indicators of serological efficacy and explain response variability in the population.

6.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33536172

ABSTRACT

The severe death toll caused by the recent outbreak of Ebola virus disease reinforces the importance of developing ebolavirus prevention and treatment strategies. Here, we have explored the immunogenicity of a novel immunization regimen priming with vesicular stomatitis virus particles bearing Sudan Ebola virus (SUDV) glycoprotein (GP) that consists of GP1 & GP2 subunits and boosting with soluble SUDV GP in macaques, which developed robust neutralizing antibody (nAb) responses following immunizations. Moreover, EB46, a protective nAb isolated from one of the immune macaques, is found to target the GP1/GP2 interface, with GP-binding mode and neutralization mechanism similar to a number of ebolavirus nAbs from human and mouse, indicating that the ebolavirus GP1/GP2 interface is a common immunological target in different species. Importantly, selected immune macaque polyclonal sera showed nAb specificity similar to EB46 at substantial titers, suggesting that the GP1/GP2 interface region is a viable target for ebolavirus vaccine.Importance: The elicitation of sustained neutralizing antibody (nAb) responses against diverse ebolavirus strains remains as a high priority for the vaccine field. The most clinically advanced rVSV-ZEBOV vaccine could elicit moderate nAb responses against only one ebolavirus strain, EBOV, among the five ebolavirus strains, which last less than 6 months. Boost immunization strategies are desirable to effectively recall the rVSV vector-primed nAb responses to prevent infections in prospective epidemics, while an in-depth understanding of the specificity of immunization-elicited nAb responses is essential for improving vaccine performance. Here, using non-human primate animal model, we demonstrated that booster immunization with a stabilized trimeric soluble form of recombinant glycoprotein derived from the ebolavirus Sudan strain following the priming rVSV vector immunization led to robust nAb responses that substantially map to the subunit interface of ebolavirus glycoprotein, a common B cell repertoire target of multiple species including primates and rodents.

7.
Science ; 368(6492)2020 05 15.
Article in English | MEDLINE | ID: mdl-32409444

ABSTRACT

De novo protein design has been successful in expanding the natural protein repertoire. However, most de novo proteins lack biological function, presenting a major methodological challenge. In vaccinology, the induction of precise antibody responses remains a cornerstone for next-generation vaccines. Here, we present a protein design algorithm called TopoBuilder, with which we engineered epitope-focused immunogens displaying complex structural motifs. In both mice and nonhuman primates, cocktails of three de novo-designed immunogens induced robust neutralizing responses against the respiratory syncytial virus. Furthermore, the immunogens refocused preexisting antibody responses toward defined neutralization epitopes. Overall, our design approach opens the possibility of targeting specific epitopes for the development of vaccines and therapeutic antibodies and, more generally, will be applicable to the design of de novo proteins displaying complex functional motifs.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Computational Biology/methods , Immunodominant Epitopes/chemistry , Protein Engineering/methods , Recombinant Fusion Proteins/chemistry , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/immunology , Amino Acid Motifs , Humans , Immunodominant Epitopes/immunology , Protein Conformation , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Vaccines/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology
8.
J Immunol ; 204(6): 1543-1561, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32066595

ABSTRACT

Elicitation of broadly neutralizing Ab (bNAb) responses toward the conserved HIV-1 envelope (Env) CD4 binding site (CD4bs) by vaccination is an important goal for vaccine development and yet to be achieved. The outcome of previous immunogenicity studies suggests that the limited accessibility of the CD4bs and the presence of predominant nonneutralizing determinants (nND) on Env may impede the elicitation of bNAbs and their precursors by vaccination. In this study, we designed a panel of novel immunogens that 1) preferentially expose the CD4bs by selective elimination of glycosylation sites flanking the CD4bs, and 2) minimize the nND immune response by engineering fusion proteins consisting of gp120 Core and one or two CD4-induced (CD4i) mAbs for masking nND epitopes, referred to as gp120-CD4i fusion proteins. As expected, the fusion proteins possess improved antigenicity with retained affinity for VRC01-class, CD4bs-directed bNAbs and dampened affinity for nonneutralizing Abs. We immunized C57BL/6 mice with these fusion proteins and found that overall the fusion proteins elicit more focused CD4bs Ab response than prototypical gp120 Core by serological analysis. Consistently, we found that mice immunized with selected gp120-CD4i fusion proteins have higher frequencies of germinal center-activated B cells and CD4bs-directed memory B cells than those inoculated with parental immunogens. We isolated three mAbs from mice immunized with selected gp120-CD4i fusion proteins and found that their footprints on Env are similar to VRC01-class bNAbs. Thus, using gp120-CD4i fusion proteins with selective glycan deletion as immunogens could focus Ab response toward CD4bs epitope.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , HIV Infections/prevention & control , HIV-1/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites, Antibody/genetics , Binding Sites, Antibody/immunology , CD4 Antigens/immunology , CD4 Antigens/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , HIV Antibodies/immunology , HIV Envelope Protein gp120/genetics , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Immunogenicity, Vaccine , Mice , Models, Animal , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
9.
Front Microbiol ; 10: 672, 2019.
Article in English | MEDLINE | ID: mdl-31065249

ABSTRACT

Here, we have established an antigen-specific single B cell sorting and monoclonal antibody (mAb) cloning platform for analyzing immunization- or viral infection-elicited antibody response at the clonal level in guinea pigs. We stained the peripheral blood mononuclear cells (PBMCs) from a guinea pig immunized with HIV-1 envelope glycoprotein trimer mimic (BG505 SOSIP), using anti-guinea pig IgG and IgM fluorochrome conjugates, along with fluorochrome-conjugated BG505 SOSIP trimer as antigen (Ag) probe to sort for Ag-specific IgGhi IgMlo B cells at single cell density. We then designed a set of guinea pig immunoglobulin (Ig) gene-specific primers to amplify cDNAs encoding B cell receptor variable regions [V(D)J segments] from the sorted Ag-specific B cells. B cell V(D)J sequences were verified by sequencing and annotated by IgBLAST, followed by cloning into Ig heavy- and light-chain expression vectors containing human IgG1 constant regions and co-transfection into 293F cells to reconstitute full-length antibodies in a guinea pig-human chimeric IgG1 format. Of 88 antigen-specific B cells isolated, we recovered 24 (27%) cells with native-paired heavy and light chains. Furthermore, 85% of the expressed recombinant mAbs bind positively to the antigen probe by enzyme-linked immunosorbent and/or BioLayer Interferometry assays, while five mAbs from four clonal lineages neutralize the HIV-1 tier 1 virus ZM109. In summary, by coupling Ag-specific single B cell sorting with gene-specific single cell RT-PCR, our method exhibits high efficiency and accuracy, which will facilitate future efforts in isolating mAbs and analyzing B cell responses to infections or immunizations in the guinea pig model.

10.
Cell Rep ; 27(2): 586-598.e6, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30970260

ABSTRACT

Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design.


Subject(s)
Epitopes/immunology , Glycoproteins/metabolism , HIV-1/immunology , Immunization/methods , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Guinea Pigs , Humans
11.
Nat Commun ; 9(1): 877, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491415

ABSTRACT

HIV-1 broadly neutralizing antibodies (bNAbs) are being explored as passively administered therapeutic and preventative agents. However, the extensively diversified HIV-1 envelope glycoproteins (Env) rapidly acquire mutations to evade individual bNAbs in monotherapy regimens. The use of a "single" agent to simultaneously target distinct Env epitopes is desirable to overcome viral diversity. Here, we report the use of tandem single-chain variable fragment (ScFv) domains of two bNAbs, specific for the CD4-binding site and V3 glycan patch, to form anti-HIV-1 bispecific ScFvs (Bi-ScFvs). The optimal Bi-ScFv crosslinks adjacent protomers within one HIV-1 Env spike and has greater neutralization breadth than its parental bNAbs. Furthermore, the combination of this Bi-ScFv with a third bNAb recognizing the Env membrane proximal external region (MPER) results in a trispecific bNAb, which has nearly pan-isolate neutralization breadth and high potency. Thus, multispecific antibodies combining functional moieties of bNAbs could achieve outstanding neutralization capacity with augmented avidity.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , HIV Antibodies/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , env Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/immunology , Antiviral Agents/therapeutic use , Drug Combinations , Epitopes/genetics , Epitopes/immunology , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV-1/genetics , HIV-1/immunology , Humans , Microscopy, Electron , Mutation , Protein Subunits/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
12.
J Virol ; 91(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28835491

ABSTRACT

Elicitation of broadly neutralizing antibody (bNAb) responses is a major goal for the development of an HIV-1 vaccine. Current HIV-1 envelope glycoprotein (Env) vaccine candidates elicit predominantly tier 1 and/or autologous tier 2 virus neutralizing antibody (NAb) responses, as well as weak and/or sporadic cross-reactive tier 2 virus NAb responses with unknown specificity. To delineate the specificity of vaccine-elicited cross-reactive tier 2 virus NAb responses, we performed single memory B cell sorting from the peripheral blood of a rhesus macaque immunized with YU2gp140-F trimers in adjuvant, using JR-FL SOSIP.664, a native Env trimer mimetic, as a sorting probe to isolate monoclonal Abs (MAbs). We found striking genetic and functional convergence of the SOSIP-sorted Ig repertoire, with predominant VH4 or VH5 gene family usage and Env V3 specificity. Of these vaccine-elicited V3-specific MAbs, nearly 20% (6/33) displayed cross-reactive tier 2 virus neutralization, which recapitulated the serum neutralization capacity. Substantial similarities in binding specificity, neutralization breadth and potency, and sequence/structural homology were observed between selected macaque cross-reactive V3 NAbs elicited by vaccination and prototypic V3 NAbs derived from natural infections in humans, highlighting the convergence of this subset of primate V3-specific B cell repertories. Our study demonstrated that cross-reactive primary virus neutralizing B cell lineages could be elicited by vaccination as detected using a standardized panel of tier 2 viruses. Whether these lineages could be expanded to acquire increased breadth and potency of neutralization merits further investigation.IMPORTANCE Elicitation of antibody responses capable of neutralizing diverse HIV-1 primary virus isolates (designated broadly neutralizing antibodies [bNAbs]) remains a high priority for the vaccine field. bNAb responses were so far observed only in response to natural infection within a subset of individuals. To achieve this goal, an improved understanding of vaccine-elicited responses, including at the monoclonal Ab level, is essential. Here, we isolated and characterized a panel of vaccine-elicited cross-reactive neutralizing MAbs targeting the Env V3 loop that moderately neutralized several primary viruses and recapitulated the serum neutralizing antibody response. Striking similarities between the cross-reactive V3 NAbs elicited by vaccination in macaques and natural infections in humans illustrate commonalities between the vaccine- and infection-induced responses to V3 and support the feasibility of exploring the V3 epitope as a HIV-1 vaccine target in nonhuman primates.


Subject(s)
Antibodies, Neutralizing/immunology , Cross Reactions/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Macaca mulatta/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Cells, Cultured , Epitopes/immunology , HIV Infections/virology , Humans , Immunization , Macaca mulatta/virology , Vaccination
13.
Cell ; 169(5): 891-904.e15, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28525756

ABSTRACT

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Ebola Vaccines/immunology , Hemorrhagic Fever, Ebola/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Complementarity Determining Regions , Cross Reactions , Ebolavirus/immunology , Epitope Mapping , Epitopes, B-Lymphocyte/immunology , Female , Ferrets , Guinea Pigs , Immunoglobulin Fab Fragments/ultrastructure , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Models, Molecular
14.
J Immunol ; 197(10): 3982-3998, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27815444

ABSTRACT

Elicitation of broadly neutralizing Ab (bNAb) responses to the conserved elements of the HIV-1 envelope glycoproteins (Env), including the primary receptor CD4 binding site (CD4bs), is a major focus of vaccine development yet to be accomplished. However, a large number of CD4bs-directed bNAbs have been isolated from HIV-1-infected individuals. Comparison of the routes of binding used by the CD4bs-directed bNAbs from patients and the vaccine-elicited CD4bs-directed mAbs indicates that the latter fail to neutralize primary virus isolates because they approach the Env spike with a vertical angle and contact the specific surface residues occluded in the native spike, including the bridging sheet on gp120. To preferentially expose the CD4bs and direct the immune response away from the bridging sheet, resulting in an altered angle of approach, we engineered an immunogen consisting of gp120 core in complex with the prototypic CD4-induced Ab, 17b. This mAb directly contacts the bridging sheet but not the CD4bs. The complex was further stabilized by chemical crosslinking to prevent dissociation. Rabbits immunized with the crosslinked complex displayed earlier affinity maturation, achieving tier 1 virus neutralization compared with animals immunized with gp120 core alone. Immunization with the crosslinked complex induced transient Ab responses with binding specificity similar to the CD4bs-directed bNAbs. mAbs derived from complex-immunized rabbits displayed footprints on gp120 more distal from the bridging sheet as compared with previous vaccine-elicited CD4bs Abs, indicating that Env-Ab complexes effectively dampen immune responses to undesired immunodominant bridging sheet determinants.


Subject(s)
Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/immunology , CD4 Antigens/metabolism , HIV Antibodies/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/biosynthesis , Binding Sites , CD4 Antigens/immunology , Epitopes/immunology , Glycosylation , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Immunization , Models, Molecular , Protein Binding , Rabbits
15.
Nucleic Acids Res ; 43(13): 6257-69, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26040697

ABSTRACT

Roles for SOX9 have been extensively studied in development and particular emphasis has been placed on SOX9 roles in cell lineage determination in a number of discrete tissues. Aberrant expression of SOX9 in many cancers, including colorectal cancer, suggests roles in these diseases as well and recent studies have suggested tissue- and context-specific roles of SOX9. Our genome wide approach by chromatin immunoprecipitation sequencing (ChIP-seq) in human colorectal cancer cells identified a number of physiological targets of SOX9, including ubiquitously expressed cell cycle regulatory genes, such as CCNB1 and CCNB2, CDK1, and TOP2A. These novel high affinity-SOX9 binding peaks precisely overlapped with binding sites for histone-fold NF-Y transcription factor. Furthermore, our data showed that SOX9 is recruited by NF-Y to these promoters of cell cycle regulatory genes and that SOX9 is critical for the full function of NF-Y in activation of the cell cycle genes. Mutagenesis analysis and in vitro binding assays provided additional evidence to show that SOX9 affinity is through NF-Y and that SOX9 DNA binding domain is not necessary for SOX9 affinity to those target genes. Collectively, our results reveal possibly a context-dependent, non-classical regulatory role for SOX9.


Subject(s)
CCAAT-Binding Factor/metabolism , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , SOX9 Transcription Factor/metabolism , Transcriptional Activation , Binding Sites , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Genome, Human , Humans , Promoter Regions, Genetic , SOX9 Transcription Factor/physiology
16.
Am J Physiol Gastrointest Liver Physiol ; 305(1): G74-83, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23660500

ABSTRACT

SOX9 regulates cell lineage specification by directly regulating target genes in a discrete number of tissues, and previous reports have shown cell proliferative and suppressive roles for SOX9. Although SOX9 is expressed in colorectal cancer, only a few direct targets have been identified in intestinal epithelial cells. We previously demonstrated increased proliferation in Sox9-deficient crypts through loss-of-function studies, indicating that SOX9 suppresses cell proliferation. In this study, crypt epithelial cells isolated from Sox9-deficient mice were used to identify potential target genes of SOX9. Insulin-like growth factor (IGF)-binding protein 4 (IGFBP-4), an inhibitor of the IGF/IGF receptor pathway, was significantly downregulated in Sox9-deficient intestinal epithelial cells and adenoma cells of Sox9-deficient ApcMin/+ mice. Immunolocalization experiments revealed that IGFBP-4 colocalized with SOX9 in mouse and human intestinal epithelial cells and in specimens from patients with primary colorectal cancer. Reporter assays and chromatin immunoprecipitation demonstrated direct binding of SOX9 to the IGFBP-4 promoter. Overexpression of SOX9 attenuated cell proliferation, which was restored following treatment with a neutralizing antibody against IGFBP-4. These results suggest that SOX9 regulates cell proliferation, at least in part via IGFBP-4. Furthermore, the antiproliferative effect of SOX9 was confirmed in vivo using Sox9-deficient mice, which showed increased tumor burden when bred with ApcMin/+ mice. Our results demonstrate, for the first time, that SOX9 is a transcriptional regulator of IGFBP-4 and that SOX9-induced activation of IGFBP-4 may be one of the mechanisms by which SOX9 suppresses cell proliferation and progression of colon cancer.


Subject(s)
Insulin-Like Growth Factor Binding Protein 4/metabolism , SOX9 Transcription Factor/metabolism , Animals , Base Sequence , Caco-2 Cells , Cell Proliferation , Gene Expression Regulation/physiology , Humans , Insulin-Like Growth Factor Binding Protein 4/genetics , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Promoter Regions, Genetic , SOX9 Transcription Factor/genetics , Specific Pathogen-Free Organisms
17.
Clin Chim Acta ; 413(1-2): 246-50, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22008704

ABSTRACT

BACKGROUND: Apolipoprotein A5 (APOA5) over-expression enhances lipolysis of triglyceride (TG) through stimulation of lipoprotein lipase (LPL) activity; however, an APOA5 G185C variant was found associated with hypertriglyceridemia. The aim of this study was, therefore, to explore the importance of APOA5 185GG in the activation of LPL. METHODS: A fragment containing mature human APOA5 cDNA was obtained by RT-PCR and subcloned into pET-15b vector. Site-directed mutagenesis was performed to generate 19 variants. Recombinant human APOA5 wild type and variants were produced in Escherichia coli, and then activation of LPL was measured. RESULTS: Activity of APOA5 variants on LPL-mediated 1,2-dimyristoyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 17 to 74% in comparison to wild type APOA5 (P<0.0001). All variants also showed reduced activation (P<0.0001) of LPL-mediated hydrolysis of very low-density lipoprotein (VLDL); activation abilities of APOA5 variants ranged from 31 to 81% of wild-type APOA5. CONCLUSIONS: APOA5 residue 185G is very important in LPL-mediated VLDL hydrolysis, and any mutation at this residue will decrease LPL activation and concomitant TG modulation.


Subject(s)
Apolipoproteins A/physiology , Lipoprotein Lipase/metabolism , Apolipoprotein A-V , Apolipoproteins A/genetics , Apolipoproteins A/metabolism , Base Sequence , DNA Primers , DNA, Complementary , Enzyme Activation , Enzyme-Linked Immunosorbent Assay , Humans , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...