Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 621(7977): 66-70, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37558882

ABSTRACT

The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a 'demon', could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4 and high-temperature superconductivity in, for example, metal hydrides3,5-7. Here, we present evidence for a demon in Sr2RuO4 from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the ß and γ bands, the demon is gapless with critical momentum qc = 0.08 reciprocal lattice units and room-temperature velocity v = (1.065 ± 0.12) × 105 m s-1 that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle-hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.

2.
Nat Commun ; 14(1): 994, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813811

ABSTRACT

Electrons and holes can spontaneously form excitons and condense in a semimetal or semiconductor, as predicted decades ago. This type of Bose condensation can happen at much higher temperatures in comparison with dilute atomic gases. Two-dimensional (2D) materials with reduced Coulomb screening around the Fermi level are promising for realizing such a system. Here we report a change in the band structure accompanied by a phase transition at about 180 K in single-layer ZrTe2 based on angle-resolved photoemission spectroscopy (ARPES) measurements. Below the transition temperature, gap opening and development of an ultra-flat band top around the zone center are observed. This gap and the phase transition are rapidly suppressed with extra carrier densities introduced by adding more layers or dopants on the surface. The results suggest the formation of an excitonic insulating ground state in single-layer ZrTe2, and the findings are rationalized by first-principles calculations and a self-consistent mean-field theory. Our study provides evidence for exciton condensation in a 2D semimetal and demonstrates strong dimensionality effects on the formation of intrinsic bound electron-hole pairs in solids.

3.
Science ; 358(6368): 1314-1317, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29217574

ABSTRACT

Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed technique of momentum-resolved electron energy-loss spectroscopy (M-EELS), we studied electronic collective modes in the transition metal dichalcogenide semimetal 1T-TiSe2 Near the phase-transition temperature (190 kelvin), the energy of the electronic mode fell to zero at nonzero momentum, indicating dynamical slowing of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. Our study provides compelling evidence for exciton condensation in a three-dimensional solid and establishes M-EELS as a versatile technique sensitive to valence band excitations in quantum materials.

4.
J Chem Phys ; 130(16): 164706, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19405615

ABSTRACT

Scanning tunneling microscopy reveals a free radical-induced surface chain reaction in the chlorination of nanoscale patterns on an otherwise H-passivated (masked) Si(100). While scanning probe methods can be used to pattern active surface regions with single-bond precision, follow-up selective chemical vapor deposition with polyatomic molecules can produce various filling characteristics. On active surface regions, molecular Cl(2) undergoes an atom abstraction reaction in which a Si dangling bond abstracts one atom of the incident Cl(2) molecule while the complementary Cl atom is scattered away from the initial abstraction site either back into the vacuum or to be captured by a second dangling bond and adsorbed there, or to react with a nearby adsorbed H atom to form volatile HCl. In contrast, I(2) undergoes only dissociative adsorption on two immediately neighboring dangling bonds, whereby two I-Si bonds are formed simultaneously upon cleavage of the I(2) bond. The different chemisorption processes of the two model diatomic molecular gases place intrinsic limitations on atomic-scale lithography and processing: Adsorption of Cl(2) results in spillage over the prepatterned regions of active bonds. In contrast, adsorption of I(2) is a pair process and results in under-filling.

5.
Science ; 301(5636): 1078-80, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12934002

ABSTRACT

We report an experimental determination of the phonon dispersion curves in a face-centered cubic (fcc) delta-plutonium-0.6 weight % gallium alloy. Several unusual features, including a large elastic anisotropy, a small-shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes, are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory calculations for delta-plutonium.

SELECTION OF CITATIONS
SEARCH DETAIL
...