Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 198: 1-11, 2023 03.
Article in English | MEDLINE | ID: mdl-36736442

ABSTRACT

Acidic lysosomes are indispensable for cancer development and linked to chemotherapy resistance. Chloroquine (CQ) and functional analogues have been considered as a potential solution to overcome the cancer progression and chemoresistance by inhibiting the lysosome-mediated autophagy and multidrug exocytosis. However, their anti-cancer efficacy in most clinical trials demonstrated modest improvement. In this study, we investigated the detailed mechanisms underlying the acquired resistance of K562 leukemic cells to CQ treatment. In response to 5-80 µM CQ, the lumen pH of endosomal-lysosomal system immediately increased and gradually reached dynamic equilibrium within 24 h. Leukemic cells produced more acidic organelles to tolerate 5-10 µM CQ. CQ (20-80 µM) concentration-dependently triggered cytosolic pH (pHi) rise, G0/G1 arrest, mitochondrial depolarization/fragmentation, and necrotic/apoptotic cell death. Oxidant induction by CQ was responsible for the mitochondria-dependent cytotoxicity and partial pHi elevation. Cells that survived the CQ cytotoxicity were accompanied with increased mitochondria. Under the 80 µM CQ challenge, co-treatment with the inhibitor of F0 part of mitochondrial H+-ATP synthase, oligomycin (40 nM), prevented the elevation of oxidants as well as pHi, and attenuated stresses on mitochondria, cell survival, and cell proliferation. Besides, oligomycin-treated cells obviously displayed the lysosomal peripheralization and plasma membrane blebbing, suggesting that these cells were in process of lysosomal exocytosis and microvesicle release. Enhanced motion of these secretory processes allowed the cells to exclude CQ and repair necrotic injury. Together, the oxidant production and the proton dynamic interconnection among lysosomes, mitochondria, and cytosol are crucial for leukemic susceptibility to lysosomotropic chemotherapeutics.


Subject(s)
Apoptosis , Chloroquine , Humans , Chloroquine/pharmacology , Necrosis/metabolism , Cell Line, Tumor , Lysosomes/metabolism , Mitochondria/metabolism , Oligomycins , Hydrogen-Ion Concentration , Autophagy
2.
Mol Genet Genomic Med ; 10(9): e2007, 2022 09.
Article in English | MEDLINE | ID: mdl-35726796

ABSTRACT

INTRODUCTION: Citrullinemia Type 1 (CTLN1) is an autosomal recessive disorder caused by variants in the ASS1 gene. This study intends to clarify the etiology of false positives in newborn screening for citrullinemia. METHOD: Newborns who had elevated dried-blood spot citrulline levels were enrolled, and medical records were reviewed retrospectively. Common ASS1 variants were screened using high-resolution melting analysis. RESULT: Between 2011 and 2021, 130 newborns received confirmatory testing for citrullinemia, 4 were found to be patients for CTLN1; 11 were patients with citrin deficiency; and 49 newborns were confirmed to be carrying one pathogenic ASS1 variant. The incidence of CTLN1 was 1 in 188,380 (95% confidence interval: 1 in 73,258 to 1 in 484,416). All ASS1 variants studied in this cohort were located in exons 11 to 15, which encode the tetrameric interface regions of the ASS1 protein. Among 10 ASS1 carriers with elevated citrulline levels and complete sequence data, four (40%) revealed additional non-benign ASS1 variants; in contrast, only 2 of the 26 controls (7.7%), with normal citrulline levels, had additional ASS1 variants. CONCLUSION: Heterozygote ASS1 variants may lead to a mild elevation of blood citrulline levels: about 2-6 times the population mean. Molecular testing and family studies remain critical for precise diagnosis, genetic counseling, and management.


Subject(s)
Citrullinemia , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Citrulline/genetics , Citrulline/metabolism , Citrullinemia/diagnosis , Citrullinemia/genetics , Heterozygote , Humans , Infant, Newborn , Retrospective Studies
3.
Oncotarget ; 10(59): 6391-6392, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31695846

ABSTRACT

[This corrects the article DOI: 10.18632/oncotarget.26567.].

4.
Oncotarget ; 10(6): 647-659, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30774762

ABSTRACT

Upregulation of the PI3K pathway has been implicated in the initiation and progression of several types of cancer, including renal cell carcinoma (RCC). Although several targeted therapies have been developed for RCC, durable and complete responses are exceptional. Thus, advanced RCC remains a lethal disease, underscoring the need of robust biomarker-based strategies to treat RCC. We report a synthetic lethal interaction between inhibition of phosphatidylinositol 3-kinase beta (PI3Kß) and loss of SETD2 methyltransferase. Clear cell RCC (ccRCC)-derived SETD2 knockout 786-0 and SETD2 mutant A498 cells treated with TGX221 (PI3Kß-specific) and AZD8186 (PI3Kß- and δ-specific) inhibitors displayed decreased cell viability, cell growth, and migration compared to SETD2 proficient 786-0 cells. Inhibition of the p110 δ and α isoforms alone had modest (δ) and no (α) effect on ccRCC cell viability, growth, and migration. In vivo, treatment of SETD2 mutant A498 cells, but not SETD2 proficient 786-0 cells, with AZD8186 significantly decreased tumor growth. Interestingly, inhibition of the downstream effector AKT (MK2206) recapitulated the effects observed in AZD8186-treated SETD2 deficient cells. Our data show that specific inhibition of PI3Kß causes synthetic lethality with SETD2 loss and suggest targeting of the AKT downstream effector pathway offers a rationale for further translational and clinical investigation of PI3Kß-specific inhibitors in ccRCC.

5.
IEEE Trans Biomed Eng ; 66(3): 873-880, 2019 03.
Article in English | MEDLINE | ID: mdl-30059292

ABSTRACT

BACKGROUND: Functional and molecular changes often precede gross anatomical changes, so early assessment of a tumor's functional and molecular response to therapy can help reduce a patient's exposure to the side effects of ineffective chemotherapeutics or other treatment strategies. OBJECTIVE: Our intent was to test the hypothesis that an ultrasound microvascular imaging approach might provide indications of response to therapy prior to assessment of tumor size. METHODS: Mice bearing clear-cell renal cell carcinoma xenograft tumors were treated with antiangiogenic and Notch inhibition therapies. An ultrasound measurement of microvascular density was used to serially track the tumor response to therapy. RESULTS: Data indicated that ultrasound-derived microvascular density can indicate response to therapy a week prior to changes in tumor volume and is strongly correlated with physiological characteristics of the tumors as measured by histology ([Formula: see text]). Furthermore, data demonstrated that ultrasound measurements of vascular density can determine response to therapy and classify between-treatment groups with high sensitivity and specificity. CONCLUSION/SIGNIFICANCE: Results suggests that future applications utilizing ultrasound imaging to monitor tumor response to therapy may be able to provide earlier insight into tumor behavior from metrics of microvascular density rather than anatomical tumor size measurements.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Carcinoma, Renal Cell , Kidney Neoplasms , Microvessels , Ultrasonography/methods , Angiography/methods , Animals , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/diagnostic imaging , Drug Monitoring , Female , Heterografts , Kidney/blood supply , Kidney/diagnostic imaging , Kidney Neoplasms/blood supply , Kidney Neoplasms/diagnostic imaging , Mice , Mice, Inbred NOD , Mice, SCID , Microvessels/diagnostic imaging , Microvessels/drug effects , Microvessels/pathology
6.
Cancer Res ; 78(12): 3135-3146, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29724720

ABSTRACT

Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase SETD2, which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (αTubK40me3) during mitosis, with αTubK40me3 required for genomic stability. We now show that monoallelic, Setd2-deficient cells retaining H3K36me3, but not αTubK40me3, exhibit a dramatic increase in mitotic defects and micronuclei count, with increased viability compared with biallelic loss. In SETD2-inactivated human kidney cells, rescue with a pathogenic SETD2 mutant deficient for microtubule (αTubK40me3), but not histone (H3K36me3) methylation, replicated this phenotype. Genomic instability (micronuclei) was also a hallmark of patient-derived cells from ccRCC. These data show that the SETD2 tumor suppressor displays a haploinsufficiency phenotype disproportionately impacting microtubule methylation and serves as an early driver of genomic instability.Significance: Loss of a single allele of a chromatin modifier plays a role in promoting oncogenesis, underscoring the growing relevance of tumor suppressor haploinsufficiency in tumorigenesis. Cancer Res; 78(12); 3135-46. ©2018 AACR.


Subject(s)
Carcinoma, Renal Cell/genetics , Chromosomes, Human, Pair 3/genetics , Histone-Lysine N-Methyltransferase/genetics , Kidney Neoplasms/genetics , Microtubules/metabolism , Animals , Carcinogenesis/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Fibroblasts , Gene Knockdown Techniques , Genomic Instability , Haploinsufficiency , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Kidney Neoplasms/pathology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/pathology , Lysine/metabolism , Methylation , Mice , Micronuclei, Chromosome-Defective
7.
Theranostics ; 8(1): 141-155, 2018.
Article in English | MEDLINE | ID: mdl-29290798

ABSTRACT

Metastatic clear-cell renal cell carcinoma (ccRCC) affects thousands of patients worldwide each year. Antiangiogenic therapy has been shown to have beneficial effects initially, but resistance is eventually developed. Therefore, it is important to accurately track the response of cancer to different therapeutics in order to appropriately adjust the therapy to maximize efficacy. Change in tumor volume is the current gold standard for determining efficacy of treatment. However, functional variations can occur much earlier than measurable volume changes. Contrast-enhanced ultrasound (CEUS) is an important tool for assessing tumor progression and response to therapy, since it can monitor functional changes in the physiology. In this study, we demonstrate how ultrasound molecular imaging (USMI) can accurately track the evolution of the disease and molecular response to treatment. Methods A cohort of NSG (NOD/scid/gamma) mice was injected with ccRCC cells and treated with either the VEGF inhibitor SU (Sunitinib malate, Selleckchem, TX, USA) or the Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-03084014, Pfizer, New York, NY, USA), or started on SU and later switched to GSI (Switch group). The therapies used in the study focus on disrupting angiogenesis and proper vessel development. SU inhibits signaling of vascular endothelial growth factor (VEGF), which is responsible for the sprouting of new vasculature, and GSI inhibits the Notch pathway, which is a key factor in the correct maturation of newly formed vasculature. Microbubble contrast agents targeted to VEGFR-2 (VEGF Receptor) were delivered as a bolus, and the bound agents were imaged in 3D after the free-flowing contrast was cleared from the body. Additionally, the tumors were harvested at the end of the study and stained for CD31. Results The results show that MI can detect changes in VEGFR-2 expression in the group treated with SU within a week of the start of treatment, while differences in volume only become apparent after the mice have been treated for three weeks. Furthermore, USMI can detect response to therapy in 92% of cases after 1 week of treatment, while the detection rate is only 40% for volume measurements. The amount of targeting for the GSI and Control groups was high throughout the duration of the study, while that of the SU and Switch groups remained low. However, the amount of targeting in the Switch group increased to levels similar to those of the Control group after the treatment was switched to GSI. CD31 staining indicates significantly lower levels of patent vasculature for the SU group compared to the Control and GSI groups. Therefore, the results parallel the expected physiological changes in the tumor, since GSI promotes angiogenesis through the VEGF pathway, while SU inhibits it. Conclusion This study demonstrates that MI can track disease progression and assess functional changes in tumors before changes in volume are apparent, and thus, CEUS can be a valuable tool for assessing response to therapy in disease. Future work is required to determine whether levels of VEGFR-2 targeting correlate with eventual survival outcomes.


Subject(s)
Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Molecular Imaging/methods , Vascular Endothelial Growth Factor Receptor-2/metabolism , Angiogenesis Inhibitors , Animals , Carcinoma, Renal Cell/genetics , Contrast Media , Female , Immunohistochemistry , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/genetics , Mice , Platelet Endothelial Cell Adhesion Molecule-1 , Vascular Endothelial Growth Factor Receptor-2/genetics
8.
Nucleic Acids Res ; 46(3): 1331-1344, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29294086

ABSTRACT

Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/genetics , Cell Cycle/genetics , Gene Expression Regulation, Fungal , Methyltransferases/genetics , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Biological Evolution , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Methyltransferases/metabolism , Nocodazole/pharmacology , Proteolysis , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tubulin Modulators/pharmacology
9.
Pharm Biol ; 55(1): 2264-2269, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29171356

ABSTRACT

CONTEXT: Tanshinone IIA (Tan IIA) is a constituent of Danshen Salvia miltiorrhiza Bunge (Lamiaceae); however, its antifatigue activity remains unclear. OBJECTIVE: To study the antifatigue properties of Tan IIA and its underlying mechanisms. MATERIALS AND METHODS: In program I, three mouse groups were separately subjected to three gavages with 0, 1 and 6 mg/kg Tan IIA and forced swimming test (FST) weekly for 8 weeks; in program II, one gavage with 0, 2 and 10 mg/kg Tan IIA was administered plus FST weekly for 4 weeks. Serum glucose, lactate, superoxide dismutase (SOD), malondialdehyde (MDA) and blood urea nitrogen (BUN) were determined after final FST. RESULTS: Tan IIA significantly prolonged swimming durations in program I but not in program II. Swimming times were 3208 ± 1054 and 2443 ± 1054 s for the 1 and 6 mg/kg treatments and 856 ± 292 s for the vehicle control. The two doses significantly reduced serum glucose levels (40.3 ± 8.5 and 60.0 1 ± 11.8 mg/kg) and lactate levels (61.3 ± 27.5 and 68.8 ± 8.5 mg/kg) in treated mice compared with those in control mice (137.5 ± 38.6 mg/kg and 122.7 ± 18.2 mg/kg, respectively). However, no significant differences were observed regarding SOD, MDA or BUN levels. DISCUSSION AND CONCLUSIONS: Tan IIA has antifatigue activity and is associated with reductions in serum glucose and lactate levels. Further studies should assess muscle hypertrophy and efficient aerobic glycolysis caused by Tan IIA. Tan IIA has potential as a pharmacological agent for fatigue resistance.


Subject(s)
Abietanes/pharmacology , Blood Glucose/drug effects , Fatigue/drug therapy , Salvia miltiorrhiza/chemistry , Abietanes/administration & dosage , Abietanes/isolation & purification , Animals , Blood Urea Nitrogen , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Lactic Acid/blood , Malondialdehyde/metabolism , Mice , Superoxide Dismutase/metabolism , Swimming
10.
JCI Insight ; 2(12)2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28614802

ABSTRACT

Cancer cells can inhibit effector T cells (Teff) through both immunomodulatory receptors and the impact of cancer metabolism on the tumor microenvironment. Indeed, Teff require high rates of glucose metabolism, and consumption of essential nutrients or generation of waste products by tumor cells may impede essential T cell metabolic pathways. Clear cell renal cell carcinoma (ccRCC) is characterized by loss of the tumor suppressor von Hippel-Lindau (VHL) and altered cancer cell metabolism. Here, we assessed how ccRCC influences the metabolism and activation of primary patient ccRCC tumor infiltrating lymphocytes (TIL). CD8 TIL were abundant in ccRCC, but they were phenotypically distinct and both functionally and metabolically impaired. ccRCC CD8 TIL were unable to efficiently uptake glucose or perform glycolysis and had small, fragmented mitochondria that were hyperpolarized and generated large amounts of ROS. Elevated ROS was associated with downregulated mitochondrial SOD2. CD8 T cells with hyperpolarized mitochondria were also visible in the blood of ccRCC patients. Importantly, provision of pyruvate to bypass glycolytic defects or scavengers to neutralize mitochondrial ROS could partially restore TIL activation. Thus, strategies to improve metabolic function of ccRCC CD8 TIL may promote the immune response to ccRCC.

11.
Cell ; 166(4): 950-962, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27518565

ABSTRACT

Posttranslational modifications (PTMs) of tubulin specify microtubules for specialized cellular functions and comprise what is termed a "tubulin code." PTMs of histones comprise an analogous "histone code," although the "readers, writers, and erasers" of the cytoskeleton and epigenome have heretofore been distinct. We show that methylation is a PTM of dynamic microtubules and that the histone methyltransferase SET-domain-containing 2 (SETD2), which is responsible for H3 lysine 36 trimethylation (H3K36me3) of histones, also methylates α-tubulin at lysine 40, the same lysine that is marked by acetylation on microtubules. Methylation of microtubules occurs during mitosis and cytokinesis and can be ablated by SETD2 deletion, which causes mitotic spindle and cytokinesis defects, micronuclei, and polyploidy. These data now identify SETD2 as a dual-function methyltransferase for both chromatin and the cytoskeleton and show a requirement for methylation in maintenance of genomic stability and the integrity of both the tubulin and histone codes.


Subject(s)
Chromatin Assembly and Disassembly , Cytoskeleton/metabolism , Histone Code , Histone-Lysine N-Methyltransferase/metabolism , Cell Line, Tumor , Cytokinesis , Genomic Instability , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Microtubules/metabolism , Mitosis , Protein Processing, Post-Translational , Tubulin/metabolism
12.
J Biol Chem ; 291(40): 21283-21295, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27528607

ABSTRACT

The yeast Set2 histone methyltransferase is a critical enzyme that plays a number of key roles in gene transcription and DNA repair. Recently, the human homologue, SETD2, was found to be recurrently mutated in a significant percentage of renal cell carcinomas, raising the possibility that the activity of SETD2 is tumor-suppressive. Using budding yeast and human cell line model systems, we examined the functional significance of two evolutionarily conserved residues in SETD2 that are recurrently mutated in human cancers. Whereas one of these mutations (R2510H), located in the Set2 Rpb1 interaction domain, did not result in an observable defect in SETD2 enzymatic function, a second mutation in the catalytic domain of this enzyme (R1625C) resulted in a complete loss of histone H3 Lys-36 trimethylation (H3K36me3). This mutant showed unchanged thermal stability as compared with the wild type protein but diminished binding to the histone H3 tail. Surprisingly, mutation of the conserved residue in Set2 (R195C) similarly resulted in a complete loss of H3K36me3 but did not affect dimethylated histone H3 Lys-36 (H3K36me2) or functions associated with H3K36me2 in yeast. Collectively, these data imply a critical role for Arg-1625 in maintaining the protein interaction with H3 and specific H3K36me3 function of this enzyme, which is conserved from yeast to humans. They also may provide a refined biochemical explanation for how H3K36me3 loss leads to genomic instability and cancer.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Methyltransferases/metabolism , Mutation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Enzyme Stability/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Methylation , Methyltransferases/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Structure-Activity Relationship
13.
Exp Neurol ; 234(2): 382-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22245158

ABSTRACT

Previous studies showed noxious unilateral forepaw electrical stimulation surprisingly evoked negative blood-oxygenation-level-dependent (BOLD), cerebral blood flow (CBF), and cerebral blood volume (CBV) fMRI responses in the bilateral striatum whereas the local neuronal spike and c-Fos activities increased. These negative responses are associated with vasoconstriction and appeared to override the increased hemodynamic responses that typically accompanied with increased neural activity. The current study aimed to investigate the role of µ-opioid system in modulating vasoconstriction in the striatum associated with noxious stimulation on a 4.7-Tesla MRI scanner. Specifically, we investigated: i) how morphine (a µ-opioid receptor agonist) affects the vasoconstriction in the bilateral striatum associated with noxious electrical forepaw stimulation in rats, and ii) how naloxone (an opioid receptor antagonist) and eticlopride (a dopamine D(2)/D(3) receptor antagonist) modulates the morphine effects onwards. Injection of morphine enhanced the negative striatal CBV responses to noxious stimulation. Sequential injection of naloxone in the same animals abolished the stimulus-evoked vasoconstriction. In a separate group of animals, injection of eticlopride following morphine also reduced the vasoconstriction. Our findings suggested that noxious stimulation endogenously activated opioid and dopamine receptors in the striatum and thus leading to vasoconstriction.


Subject(s)
Corpus Striatum/drug effects , Morphine/pharmacology , Narcotics/pharmacology , Pain/physiopathology , Synaptic Transmission/drug effects , Vasoconstriction/drug effects , Animals , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Corpus Striatum/blood supply , Corpus Striatum/physiopathology , Dopamine Antagonists/pharmacology , Magnetic Resonance Imaging , Male , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Rats, Wistar , Salicylamides/pharmacology , Synaptic Transmission/physiology
14.
J Neurosci ; 29(10): 3036-44, 2009 Mar 11.
Article in English | MEDLINE | ID: mdl-19279240

ABSTRACT

Functional magnetic resonance imaging (fMRI) has revolutionized investigations of brain functions. Increases in fMRI signals are usually correlated with neuronal activation, but diverse explanations have been proposed for negative fMRI responses, including decreases in neuronal activity, the vascular-steal effect, and large increases in oxygen consumption. These possible scenarios, although encompassing a wide range of potential neurovascular responses, cannot yet be used to interpret certain types of negative fMRI signals. Recent studies have found that intravenous injection of dopamine D(2) receptor (D2DR) agonist reduced the hemodynamic responses in the caudate-putamen (CPu); however, whether endogenous dopaminergic neurotransmission contributes to fMRI signals remains obscure. Since it has been suggested that the D2DR is involved in pain modulation, and the CPu shows equivocal fMRI signals during noxious stimulation, the present study established an animal model based on graded electrical stimulation to elicit different levels of nociception, and aimed to determine whether nociception-induced endogenous dopaminergic neurotransmission is sufficient to generate negative fMRI responses. Our results from cerebral blood volume (CBV)-weighted fMRI, Fos immunohistochemistry, and electrophysiological recording demonstrated a salient bilateral CBV decreases associated with heightened neuronal activity in the CPu induced by unilateral noxious electrical stimulation. In addition, preinjection of D2DR antagonist reduced the observed CBV decreases. Our findings reveal the role of the D2DR in regulating striatal vascular responses and suggest that endogenous neurotransmission-induced CBV decreases underlie negative fMRI signals. Hence, the influence of endogenous neurotransmission should be considered when interpreting fMRI data, especially in an area involved in strong vasoactive neurotransmission.


Subject(s)
Magnetic Resonance Imaging/methods , Synaptic Transmission/physiology , Animals , Brain/physiology , Brain Mapping/methods , Electric Stimulation/methods , Male , Pain Measurement/methods , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...