Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 10805, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26917111

ABSTRACT

Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols ß and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol ß, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol ß- and λ-deficient cell extracts suggest that Pol ß levels can greatly affect rNMP incorporation opposite oxidative DNA lesions.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Polymerase beta/metabolism , DNA Repair , Oxidative Stress , Ribonucleotides/metabolism , Animals , Cell Line , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...