Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 227: 171-183, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33295345

ABSTRACT

In the realm of two-dimensional material frameworks, single-element graphene-like lattices, known as Xenes, pose several issues concerning their environmental stability, with implications for their use in technology transfer to a device layout. In this Discussion, we scrutinize the chemical reactivity of epitaxial silicene, taken as a case in point, in oxygen-rich environments. The oxidation of silicene is detailed by means of a photoemission spectroscopy study upon carefully dosing molecular oxygen under vacuum and subsequent exposure to ambient conditions, showing different chemical reactivity. We therefore propose a sequential Al2O3 encapsulation of silicene as a solution to face degradation, proving its effectiveness by virtue of the interaction between silicene and a silver substrate. Based on this method, we generalize our encapsulation scheme to a large number of metal-supported Xenes by taking into account the case of epitaxial phosphorene-on-gold.

2.
ACS Appl Mater Interfaces ; 11(45): 42697-42707, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31625717

ABSTRACT

For the integration of two-dimensional (2D) transition metal dichalcogenides (TMDC) with high-performance electronic systems, one of the greatest challenges is the realization of doping and comprehension of its mechanisms. Low-temperature atomic layer deposition of aluminum oxide is found to n-dope MoS2 and ReS2 but not WS2. Based on electrical, optical, and chemical analyses, we propose and validate a hypothesis to explain the doping mechanism. Doping is ascribed to donor states in the band gap of AlxOy, which donate electrons or not, based on the alignment of the electronic bands of the 2D TMDC. Through systematic experimental characterization, incorporation of impurities (e.g., carbon) is identified as the likely cause of such states. By modulating the carbon concentration in the capping oxide, doping can be controlled. Through systematic and comprehensive experimental analysis, this study correlates, for the first time, 2D TMDC doping to the carbon incorporation on dielectric encapsulation layers. We highlight the possibility to engineer dopant layers to control the material selectivity and doping concentration in 2D TMDC.

3.
Nanotechnology ; 30(28): 285705, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-30921772

ABSTRACT

Two-dimensional transition metal dichalcogenides have been the focus of intense research for their potential application in novel electronic and optoelectronic devices. However, growth of large area two-dimensional transition metal dichalcogenides invariably leads to the formation of grain boundaries that can significantly degrade electrical transport by forming large electrostatic barriers. It is therefore critical to understand their effect on the electronic properties of two-dimensional semiconductors. Using MoS2 as an example material, we are able to probe grain boundaries in top and buried layers using conductive atomic force microscopy. We find that the electrical radius of the grain boundary extends approximately 2 nm from the core into the pristine material. The presence of grain boundaries affects electrical conductivity not just within its own layer, but also in the surrounding layers. Therefore, electrical grain size is always smaller than the physical size, and decreases with increasing thickness of the MoS2. These results signify that the number of layers in synthetically grown 2D materials must ideally be limited for device applications.

4.
Nanotechnology ; 29(42): 425602, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30070657

ABSTRACT

The rapid cadence of MOSFET scaling is stimulating the development of new technologies and accelerating the introduction of new semiconducting materials as silicon alternative. In this context, 2D materials with a unique layered structure have attracted tremendous interest in recent years, mainly motivated by their ultra-thin body nature and unique optoelectronic and mechanical properties. The development of scalable synthesis techniques is obviously a fundamental step towards the development of a manufacturable technology. Metal-organic chemical vapor deposition has recently been used for the synthesis of large area TMDs, however, an important milestone still needs to be achieved: the ability to precisely control the number of layers and surface uniformity at the nano-to micro-length scale to obtain an atomically flat, self-passivated surface. In this work, we explore various fundamental aspects involved in the chemical vapor deposition process and we provide important insights on the layer-dependence of epitaxial MoS2 film's structural properties. Based on these observations, we propose an original method to achieve a layer-controlled epitaxy of wafer-scale TMDs.

5.
Nat Nanotechnol ; 10(3): 227-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25643256

ABSTRACT

Free-standing silicene, a silicon analogue of graphene, has a buckled honeycomb lattice and, because of its Dirac bandstructure combined with its sensitive surface, offers the potential for a widely tunable two-dimensional monolayer, where external fields and interface interactions can be exploited to influence fundamental properties such as bandgap and band character for future nanoelectronic devices. The quantum spin Hall effect, chiral superconductivity, giant magnetoresistance and various exotic field-dependent states have been predicted in monolayer silicene. Despite recent progress regarding the epitaxial synthesis of silicene and investigation of its electronic properties, to date there has been no report of experimental silicene devices because of its air stability issue. Here, we report a silicene field-effect transistor, corroborating theoretical expectations regarding its ambipolar Dirac charge transport, with a measured room-temperature mobility of ∼100 cm(2) V(-1) s(-1) attributed to acoustic phonon-limited transport and grain boundary scattering. These results are enabled by a growth-transfer-fabrication process that we have devised--silicene encapsulated delamination with native electrodes. This approach addresses a major challenge for material preservation of silicene during transfer and device fabrication and is applicable to other air-sensitive two-dimensional materials such as germanene and phosphorene. Silicene's allotropic affinity with bulk silicon and its low-temperature synthesis compared with graphene or alternative two-dimensional semiconductors suggest a more direct integration with ubiquitous semiconductor technology.

6.
Nano Lett ; 15(1): 535-41, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25489967

ABSTRACT

We demonstrate that Fe4 molecules can be deposited on gold by thermal sublimation in ultra-high vacuum with retention of single molecule magnet behavior. A magnetic hysteresis comparable to that found in bulk samples is indeed observed when a submonolayer film is studied by X-ray magnetic circular dichroism. Scanning tunneling microscopy evidences that Fe4 molecules are assembled in a two-dimensional lattice with short-range hexagonal order and coexist with a smaller contaminant. The presence of intact Fe4 molecules and the retention of their bistable magnetic behavior on the gold surface are supported by density functional theory calculations.

7.
Adv Mater ; 26(13): 2096-101, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24347540

ABSTRACT

The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states.

8.
Small ; 9(6): 913-9, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23208894

ABSTRACT

A self-organised approach for the synthesis of transparent metal nanowire arrays is based on defocused ion beam sputtering. The nanowire arrays, supported on low-cost dielectric substrates (glass slides), feature a dual functionality: they exhibit anisotropic conductivity, with sheet resistances which are reduced in comparison to those of transparent conductive oxides, and additionally they support localised plasmon resonances. The latter represents an attractive feature in view of plasmon enhanced photon harvesting applications, in which the nanostructured metal electrodes are employed as an alternative to conventional transparent conductive oxides.

9.
Opt Express ; 21(25): 30918-31, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514665

ABSTRACT

Gold nanoparticles deposited on self-organized nano-ripple quartz substrates have been studied by spectroscopic Mueller matrix ellipsometry. The surface was found to have biaxial anisotropic optical properties. For electric field components normal to the ripples the periodic and disconnected nature of the in plane nanowires gives rise to an optical response dominated by the localized plasmon resonance. In the direction parallel to the ripples the gold nanoparticles are aligned closely leading to localized plasmon resonances in the infrared. As Au was deposited at an angle oblique to the surface normal, the gold nanoparticles were formed on the side of the ripples facing the incoming evaporation flux. This makes the gold particles slightly inclined, correspondingly the principal coordinate system of the biaxial dielectric tensor results tilted. The anisotropic plasmonic optical response results in a strong polarizing effect, making it suitable as a plasmonic nanowired grid polarizer.

11.
ACS Nano ; 5(7): 5945-56, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21688789

ABSTRACT

We explore the effect of re-radiation in surface-enhanced Raman scattering (SERS) through polarization-sensitive experiments on self-organized gold nanowires on which randomly oriented Methylene Blue molecules are adsorbed. We provide the exact laws ruling the polarized, unpolarized, and parallel- and cross-polarized SERS intensity as a function of the field polarizations. We show that SERS is polarized along the wire-to-wire nanocavity axis, independently from the excitation polarization. This proves the selective enhancement of the Raman dipole component parallel to the nanocavity at the single molecule level. Introducing a field enhancement tensor to account for the anisotropic polarization response of the nanowires, we work out a model that correctly predicts the experimental results for any excitation/detection polarization and goes beyond the E(4) approximation. We also show how polarization-sensitive SERS experiments permit one to evaluate independently the excitation and the re-radiation enhancement factors accessing the orientation-averaged non-diagonal components of the molecular Raman polarizability tensor.


Subject(s)
Gold/chemistry , Nanowires/chemistry , Radiation , Spectrum Analysis, Raman , Adsorption , Anisotropy , Models, Theoretical , Surface Properties
12.
Inorg Chem ; 50(7): 2911-7, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21351750

ABSTRACT

Surface-supported arrays of Fe(4)-type Single-Molecule Magnets retain a memory effect and are of current interest in the frame of molecule-based information storage and spintronics. To reveal the spin structure of [Fe(4)(L)(2)(dpm)(6)] (1) on Au, an isomorphous compound [Fe(3)Cr(L)(2)(dpm)(6)] was synthesized and structurally and magnetically characterized (H(3)L is tripodal ligand 11-(acetylthio)-2,2-bis(hydroxymethyl)undecan-1-ol and Hdpm is dipivaloylmethane). The new complex contains a central Cr(3+) ion and has a S = 6 ground state as opposed to S = 5 in 1. Low-temperature X-ray Magnetic Circular Dichroism studies at Fe- and Cr-L(2,3) edges revealed that the antiparallel alignment between Fe and Cr spins is preserved on surfaces. Moreover, the different Fe-L(2,3) spectral features found in the homo- and heterometallic species disclose the opposing contribution of the central Fe(3+) ion in the former compound, proving that its ferrimagnetic spin structure is retained on surfaces.


Subject(s)
Magnetics , Organometallic Compounds/chemistry , Circular Dichroism , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Surface Properties
14.
Opt Express ; 17(5): 3603-9, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-19259200

ABSTRACT

Here we report the second harmonic emission properties of self-organized gold nanowires arrays supported on dielectric substrates with a sub-wavelength periodic pattern. The peculiar morphology of the nanowires, which are locally tilted with respect to the average plane of the substrate, allows to generate maximum second harmonic signal at normal incidence with a polarization direction driven by the orientation of the wires (perpendicular to the wires). The generation efficiency was increased by tailoring the growth process in order to tune the metal plasmon resonance close to the pump field frequency and also by increasing the local tilt of the nanowires.

15.
Small ; 5(12): 1460-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19283797

ABSTRACT

A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.


Subject(s)
Iron/chemistry , Magnetics , Temperature , Electron Spin Resonance Spectroscopy , Spectrometry, Mass, Secondary Ion , Time Factors , Vacuum , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...