Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Epigenomes ; 8(3)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39189256

ABSTRACT

Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions.

2.
J Exp Bot ; 75(11): 3351-3367, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38459807

ABSTRACT

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains. To decipher the mechanism induced by pollination required to avoid ovule senescence and then abortion, we compared the transcriptomes of pollinated and unpollinated ovules at three time points after the end of the emission of pollination drop. Transcriptomic and in situ expression analyses revealed that several key genes involved in programmed cell death such as senescence and apoptosis, DNA replication, and cell cycle regulation were differentially expressed in unpollinated ovules compared to pollinated ovules. We provide evidence that the pollen captured by the pollination drop affects auxin local accumulation and might cause deregulation of key genes required for the ovule's programmed cell death, activating both the cell cycle regulation and DNA replication genes.


Subject(s)
Ginkgo biloba , Ovule , Pollen , Pollination , Ovule/growth & development , Ovule/physiology , Ovule/genetics , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Ginkgo biloba/genetics , Ginkgo biloba/physiology , Ginkgo biloba/growth & development , Transcriptome , Gene Expression Regulation, Plant
3.
Plants (Basel) ; 12(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37653968

ABSTRACT

Gene duplication played a fundamental role in eukaryote evolution and different copies of a given gene can be present in extant species, often with expressions and functions differentiated during evolution. We assume that, when such differentiation occurs in a gene copy, this may be indicated by its maintenance in all the derived species. To verify this hypothesis, we compared the histological expression domains of the three ß-glucuronidase genes (AtGUS) present in Arabidopsis thaliana with the GUS evolutionary tree in angiosperms. We found that AtGUS gene expression overlaps in the shoot apex, the floral bud and the root hairs. In the root apex, AtGUS3 expression differs completely from AtGUS1 and AtGUS2, whose transcripts are present in the root cap meristem and columella, in the staminal cell niche, in the epidermis and in the proximal cortex. Conversely, AtGUS3 transcripts are limited to the old border-like cells of calyptra and those found along the protodermal cell line. The GUS evolutionary tree reveals that the two main clusters (named GUS1 and GUS3) originate from a duplication event predating angiosperm radiation. AtGUS3 belongs to the GUS3 cluster, while AtGUS1 and AtGUS2, which originate from a duplication event that occurred in an ancestor of the Brassicaceae family, are found together in the GUS1 cluster. There is another, previously undescribed cluster, called GUS4, originating from a very ancient duplication event. While the copy of GUS4 has been lost in many species, copies of GUS3 and GUS1 have been conserved in all species examined.

4.
Plant Sci ; 332: 111726, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37149227

ABSTRACT

Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.) Heynh's root apical meristem (RAM) exposed for short periods (24 h and 48 h) to acute phytotoxic concentrations (100 and 150 µM). The effects were studied through integrated morpho-histological, molecular, pharmacological and metabolomic analyses, highlighting that Cd inhibited primary root elongation by affecting the meristem zone via altering cell expansion. Moreover, Cd altered Auxin accumulation in RAM and affected PINs polar transporters, particularly PIN2. In addition, we observed that high Cd concentration induced accumulation of reactive oxygen species (ROS) in roots, which resulted in an altered organization of cortical microtubules and the starch and sucrose metabolism, altering the statolith formation and, consequently, the gravitropic root response. Our results demonstrated that short Cd exposition (24 h) affected cell expansion preferentially, altering auxin distribution and inducing ROS accumulation, which resulted in an alteration of gravitropic response and microtubules orientation pattern.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Cadmium/toxicity , Cadmium/metabolism , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Perception
5.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240115

ABSTRACT

Anthocyanins protect plants against various biotic and abiotic stresses, and anthocyanin-rich foods exert benefits on human health due to their antioxidant activity. Nevertheless, little information is available on the influence of genetic and environmental factors on the anthocyanin content in olive fruits. Based on this consideration, the total anthocyanin content, the genes involved in anthocyanin biosynthesis, and three putative R2R3-MYB transcription factors were evaluated at different ripening stages in the drupes of the Carolea and Tondina cultivars, sampled at different altitudes in the Calabria region, Italy. During drupe ripening, the total anthocyanin content and the transcript levels of analyzed genes gradually increased. In line with the anthocyanin content, a different level of expression of anthocyanin structural genes was observed in 'Carolea' compared to 'Tondina', and in relation to the cultivation area. Furthermore, we identified Oeu050989.1 as a putative R2R3-MYB involved in the regulation of anthocyanin structural genes correlated with the environmental temperature change response. We conclude that anthocyanin accumulation is strongly regulated by development, genotype, and also by environmental factors such as temperature, associated with the altitude gradient. The obtained results contribute to reducing the current information gap regarding the molecular mechanisms on anthocyanin biosynthesis regulation related to the environmental conditions in Olea europaea.


Subject(s)
Anthocyanins , Olea , Humans , Anthocyanins/metabolism , Olea/genetics , Olea/metabolism , Transcription Factors/metabolism , Genotype , Antioxidants/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Fruit/metabolism
6.
Front Plant Sci ; 13: 1062194, 2022.
Article in English | MEDLINE | ID: mdl-36507427

ABSTRACT

Introduction: Peach (Prunus persica (L.) Batsch,) and nectarine fruits (Prunus persica (L.) Batsch, var nectarine), are characterized by a rapid deterioration at room temperature. Therefore, cold storage is widely used to delay fruit post-harvest ripening and extend fruit commercial life. Physiological disorders, collectively known as chilling injury, can develop typically after 3 weeks of low-temperature storage and affect fruit quality. Methods: A comparative transcriptomic analysis was performed to identify regulatory pathways that develop before chilling injury symptoms are detectable using next generation sequencing on the fruits of two contrasting cultivars, one peach (Sagittaria) and one nectarine, (Big Top), over 14 days of postharvest cold storage. Results: There was a progressive increase in the number of differentially expressed genes between time points (DEGs) in both cultivars. More (1264) time point DEGs were identified in 'Big Top' compared to 'Sagittaria' (746 DEGs). Both cultivars showed a downregulation of pathways related to photosynthesis, and an upregulation of pathways related to amino sugars, nucleotide sugar metabolism and plant hormone signal transduction with ethylene pathways being most affected. Expression patterns of ethylene related genes (including biosynthesis, signaling and ERF transcription factors) correlated with genes involved in cell wall modification, membrane composition, pathogen and stress response, which are all involved later during storage in development of chilling injury. Discussion: Overall, the results show that common pathways are activated in the fruit of 'Big Top' nectarine and 'Sagittaria' peach in response to cold storage but include also differences that are cultivar-specific responses.

7.
Foods ; 11(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076741

ABSTRACT

Cold storage is used to extend peach commercial life, but can affect quality. Quality changes are assessed through the content of nutritionally relevant compounds, aroma, physical characters and/or sensorially. Here, six peach and nectarine cultivars were sampled at commercial harvest and after 7 days of 1 °C storage. A trained panel was used to evaluate sensorial characters, while carotenoids, phenolics, vitamin C, total sugars, and qualitative traits including firmness, titrable acidity and soluble solid content were integrated with volatile organic compound (VOC) analysis previously reported. The different analyses reveal interesting patterns of correlation, and the six cultivars responded differently to cold storage. Sensory parameters were correlated with 64 VOCs and seven intrinsic characters. Acidity, firmness, and 10 VOCs were strongly negatively correlated with harmony and sweetness, but positively correlated with bitterness, astringency, and crunchiness. In contrast, Brix, b-carotene, and six VOCs were positively correlated with harmony and sweetness.

8.
Foods ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36010424

ABSTRACT

Nectarines are perishable fruits grown in Southern Europe, valued for their sensorial properties. Chilling is used in the supply chain for Northern European consumers, while Southern European consumers can access fresh, locally grown fruit or cold-stored supermarket fruit. Cold storage and fruit ripening affect texture and flavour. Here a consumer survey and hedonic testing compared the appreciation of nectarines (cv. Big Top) in Italy and at two UK sites (n = 359). Fruit was at the commercial harvest stage, or stored at 1 °C or 5 °C for seven days, then sampled after two days' (Italy and one UK site) or four days' (second UK site) ambient recovery. In the consumer survey, the most important factors involved in purchase decision were ripeness, texture, colour, taste and price. Named varieties were more important to Italian than UK respondents, whilst ripeness, price, taste, blemishes, aroma, and 'best before date' were more important in the UK. In sensory analyses, fruits at the commercial harvest stage were preferred to those stored at 1 °C. Preference for the 5 °C stored peaches depended on recovery time. Distinct clusters of peach sensorial attributes were positively or negatively linked to hedonic rating. Factors important in purchase decisions did not affect hedonic rating in the tasting.

9.
Plant Sci ; 319: 111254, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35487663

ABSTRACT

The ddc mutant of Arabidopsis thaliana is characterized by pleiotropic phenotypic alterations including a curl-shaped leaf, previously explained by disturbed auxin metabolism and transport. The present study was aimed at further explore the molecular bases underlying the abnormal phenotype of the ddc leaf. We demonstrated that genes specifically related to leaf fate commitment and morphogenesis were misexpressed on developing ddc leaves, such as upregulation of CURLY LEAF (CLF) and downregulation of ASYMMETRIC LEAVES2 (AS2), KNOTTED-like gene from A. thaliana (KNAT6), TEOSINTE-LIKE1 CYCLOIDEA and PROLIFERATING CELL FACTOR 2 (TCP2) and others. The CLF gene, encoding a component of Polycomb repressive complex 2 (PRC2) which adds trimethylation marks at Lys27 of histone H3, was overexpressed in the ddc mutant and concomitantly was correlated with DNA methylation-dependent repression of its negative regulator UCL1. KNAT6, encoding a class 1 KNOX homeotic gene, had increased H3K27me3 trimethylation levels, suggesting it is a target gene of the CLF containing PRC2 complex in the ddc mutant. We postulate that different epigenetic mechanisms modulate expression of genes related to auxin pathways as well as gene targets of Polycomb repressive action, during leaf morphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism
10.
J Sci Food Agric ; 102(11): 4500-4513, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35122271

ABSTRACT

BACKGROUND: There is increasing consumer demand for olive oil to be traceable. However, genotype, environmental factors, and stage of maturity, all affect the flavor and composition of both the olives and olive oil. Few studies have included all three variables. Key metabolites include lipids, phenolics, and a wide range of volatile organic compounds (VOCs), which provide the olives and oil with their characteristic flavor. Here we aim to identify markers that are able to discriminate between cultivars, that can identify growth location, and can discriminate stages of fruit maturity. 'Nocellara messinese' and 'Carolea' olive fruits were grown at three locations differing in altitude in Calabria, Italy, and harvested at three stages of maturity. Oil was analyzed from the two most mature stages. RESULTS: Nine and 20 characters discriminated all fruit and oil samples respectively, and relative abundance of two fatty acids distinguished all oils. Whole VOC profiles discriminated among the least mature olives, and oil VOC profiles discriminated location and cultivar at both stages. Three VOCs putatively identified as hexanal, methyl acetate, and 3-hexen-1-ol differentiated all samples of oils from the most mature fruit stage. CONCLUSION: The results confirm that interactions of location, cultivar and fruit maturity stage are critical for the overall pattern of aroma compounds, and identify potential markers of commercial relevance. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Olea , Volatile Organic Compounds , Fruit/chemistry , Olea/chemistry , Olive Oil/chemistry , Phenols/analysis , Volatile Organic Compounds/chemistry
11.
Microorganisms ; 10(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056586

ABSTRACT

In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.

12.
Sci Rep ; 11(1): 10965, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040101

ABSTRACT

DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Cadmium/pharmacology , DNA-Cytosine Methylases/physiology , Gene Expression Regulation, Plant/drug effects , Methyltransferases/physiology , Plant Growth Regulators/genetics , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Base Sequence , Cytokinins/biosynthesis , Cytokinins/genetics , DNA Methylation , DNA, Plant/genetics , DNA-Cytosine Methylases/deficiency , DNA-Cytosine Methylases/genetics , Genes, Plant , Methyltransferases/deficiency , Methyltransferases/genetics , Mutation , Plant Roots/growth & development , RNA, Messenger/genetics , RNA, Plant/genetics , Soil Pollutants/pharmacology , Stress, Physiological/genetics , Transcriptome/drug effects
13.
Sci Rep ; 10(1): 18333, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110132

ABSTRACT

Peaches have a short shelf life and require chilling during storage and transport. Peach aroma is important for consumer preference and determined by underlying metabolic pathways and gene expression. Differences in aroma (profiles of volatile organic compounds, VOCs) have been widely reported across cultivars and in response to cold storage. However, few studies used intact peaches, or used equilibrium sampling methods subject to saturation. We analysed VOC profiles using TD-GC × GC-ToF-MS and expression of 12 key VOC pathway genes of intact fruit from six cultivars (three peaches, three nectarines) before and after storage at 1 °C for 7 days including 36 h shelf life storage at 20 °C. Two dimensional GC (GC × GC) significantly enhances discrimination of thermal desorption gas chromatography time-of-flight mass spectrometry (TD-GC-ToF-MS) and detected a total of 115 VOCs. A subset of 15 VOCs from analysis with Random Forest discriminated between cultivars. Another 16 VOCs correlated strongly with expression profiles of eleven key genes in the lipoxygenase pathway, and both expression profiles and VOCs discriminated amongst cultivars, peach versus nectarines and between treatments. The cultivar-specific response to cold storage underlines the need to understand more fully the genetic basis for VOC changes across cultivars.


Subject(s)
Food Storage , Fruit/genetics , Prunus persica/genetics , Volatile Organic Compounds/metabolism , Chromatography, Gas , Cold Temperature/adverse effects , Fruit/metabolism , Fruit/physiology , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Prunus persica/metabolism , Prunus persica/physiology , Transcriptome
14.
Article in English | MEDLINE | ID: mdl-32195234

ABSTRACT

Olive leaf extract is characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives). These compounds are defined as secondary metabolites and exert such as anti-inflammatory, antioxidant, and antimicrobial activities. We investigated the in vitro antifungal activity of two olive leaf extracts (named EF1 and EF2) against a Fusarium proliferatum (AACC0215) strain that causes diseases to many economically important plants and synthesizing diverse mycotoxins. In this work, we aimed to identify the most appropriate concentration between the tested two olive leaf extracts to develop a safe, stable and efficient drug delivery system. Qualitative and quantitative analyses of the two olive leaf extracts by (HPLC) were performed. Furthermore, we also evaluated the antifungal effects of the two leaf extracts when encapsulated in chitosan-tripolyphosphate nanoparticles. The major compound in both EF1 and EF2 was oleuropein, with 336 and 603 mg/g, respectively, however, high concentrations of flavonoid were also present. EF1 and EF2 showed a concentration depended effect on F. proliferatum (AACC0215) viability. Our results showed a great efficacy of EF1/nanoparticles at the higher concentration tested (12X) against the target species. In this case, we observed an inhibition rate to both germination and growth of 87.96 and 58.13%, respectively. We suggest that EF1 olive leaf extracts, as free or encapsulated in chitosan-tripolyphosphate nanoparticles, could be used as fungicides to control plant diseases. Finally, future application of these findings may allow to reduce the dosage of fungicides potentially harmful to human health.

15.
BMC Plant Biol ; 19(1): 428, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31619170

ABSTRACT

BACKGROUND: Olive (Olea europaea L.) is an emblematic oil tree crop in the Mediterranean basin. Currently, despite olive features as a moderately thermophilic species, its cultivation is worldwide spreading due to the health-related impact of olive products on human nutrition. A point of concern for the expanding olive cultivation is related to the influence that, in addition to genotype, environmental factors exerts on drupe development and metabolism with consequent impact on fruit key traits. In this context, the aim of the present work was to gain further information on the genetic networks controlling drupe maturation phase and, mainly, on their modulation in response to environmental cues. RESULTS: To achieve this goal, a comparative transcriptome-wide investigation was carried out on drupes of Olea europaea cultivar Carolea, collected from plants growing in areas at different altitude level and therefore experiencing different climatic conditions. Two maturation stages of drupe were analysed: green mature and turning-purple. Metabolic characterization of drupe was also performed. At both transcriptomic and metabolic level differences were detected in the pathway of fatty acids (FAs) and phenol compounds, in relation to both drupe maturation stage and cultivation area. Among the most relevant differences detected during the transition from GM to TP stages there were: the upregulation of FADs genes in the drupes of population growing at 700 masl, the upregulation of phenol biosynthesis-related genes in drupes growing at 10 and 200 masl and very interestingly the downregulation of specific genes involved in secoiridoids production in drupes growing at 700 masl. Globally, these results suggested that stability of FAs and phenols, mainly of secoiridoids group, is promoted at high altitude, while at lower altitude phenol biosynthesis is prolonged. CONCLUSION: The obtained results showed a differential modulation of genetic pathways related to olive compound quality in relation to the cultivation area, likely imposed by the different temperature impending at each altitude. The derived molecular information appears of interest for both breeding and biotechnological programs of olive species, especially with respect to the modulation of antioxidant secoiridoid compounds which play a key role in conferring both sensorial and healthy characteristic to olive products.


Subject(s)
Fatty Acids/metabolism , Metabolome , Olea/genetics , Phenols/metabolism , Transcriptome , Fruit/genetics , Gene Regulatory Networks , Genotype , Humans , Olea/metabolism
16.
PLoS One ; 14(9): e0223354, 2019.
Article in English | MEDLINE | ID: mdl-31568506

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0221460.].

17.
PLoS One ; 14(8): e0221460, 2019.
Article in English | MEDLINE | ID: mdl-31437230

ABSTRACT

BACKGROUND: The ripening process of olive fruits is associated with chemical and/or enzymatic specific transformations, making them particularly attractive to animals and humans. In olive drupes, including 'Cassanese' ones, ripening is usually accompanied by progressive chromatic change, resulting in a final red-brown colourization of both epidermis and mesocarp. This event has an exception in the 'Leucocarpa', in which we observed the destabilization in the equilibrium between the chlorophyll metabolism and that of the other pigments, particularly the anthocyanins, whose switch-off during maturation promotes the white colouration of the fruits. Recently, transcription profiling of 'Leucocarpa' and 'Cassanese' olives along ripening, performed through an Illumina RNA-seq approach, has provided useful insights on genes functions involved in fruit maturation such as those related to the biosynthesis of flavonoids and anthocyanins. METHODOLOGY: To assess expression alterations of genes involved in flavonoids and anthocyanins biosynthetic pathways during ripening, possibly caused by small nuclear RNA (snRNA) in olive drupes, snRNA libraries from 'Leucocarpa' and 'Cassanese' were constructed with RNAs extracted at 100 and 130 Days After Flowering (DAF) and sequenced by an Illumina approach. 130 conserved microRNAs (miRNA) in the Viridiplantae belonging to 14 miRNA families were identified. Regarding the 130 conserved miRNAs, approximately the 48% were identified in all libraries, 5 and 18 miRNAs were shared between the "Cassanese" (C100, C130) and "Leucocarpa" (L100, L130) libraries, respectively. CONCLUSION: For the remaining reads not-matching with known miRNAs in the Viridiplantae, we combined secondary structure and minimum free energy to discover novel olive miRNAs. Based on these analyses, 492 sequences were considered as putative novel miRNAs. The putative target genes of identified miRNA were computationally predicted by alignment with the olive drupe transcripts obtained from the same samples. A total of 218 transcripts were predicted as targets of 130 known and 492 putative novel miRNAs. Interestingly, some identified target genes are involved in negative regulation of anthocyanin metabolic process. Quantification of the expression pattern of three miRNA and their target transcripts by qRT-PCR assay confirmed the results of Illumina sequencing.


Subject(s)
Fruit/growth & development , Fruit/genetics , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Olea/genetics , Transcriptome/genetics , Conserved Sequence/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Gene Library , Gene Ontology , MicroRNAs/chemistry , MicroRNAs/metabolism , Nucleic Acid Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/chemistry , RNA, Plant/genetics , RNA, Plant/metabolism
18.
Plant Sci ; 280: 383-396, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30824017

ABSTRACT

DNA methylation carried out by different methyltransferase classes is a relevant epigenetic modification of DNA which plays a relevant role in the development of eukaryotic organisms. Accordingly, in Arabidopsis thaliana loss of DNA methylation due to combined mutations in genes encoding for DNA methyltransferases causes several developmental abnormalities. The present study describes novel growth disorders in the drm1 drm2 cmt3 triple mutant of Arabidopsis thaliana, defective both in maintenance and de novo DNA methylation, and highlights the correlation between DNA methylation and the auxin hormone pathway. By using an auxin responsive reporter gene, we discovered that auxin accumulation and distribution were affected in the mutant compared to the wild type, from embryo to adult plant stage. In addition, we demonstrated that the defective methylation status also affected the expression of genes that regulate auxin hormone pathways from synthesis to transport and signalling and a direct relationship between differentially expressed auxin-related genes and altered auxin accumulation and distribution in embryo, leaf and root was observed. Finally, we provided evidence of the direct and organ-specific modulation of auxin-related genes through the DNA methylation process.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , DNA-Cytosine Methylases/metabolism , Indoleacetic Acids/metabolism , Methyltransferases/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , DNA Methylation , DNA-Cytosine Methylases/genetics , Epigenesis, Genetic , Genes, Reporter , Methyltransferases/genetics , Mutation , Organ Specificity , Phenotype , Signal Transduction
19.
Front Plant Sci ; 8: 1323, 2017.
Article in English | MEDLINE | ID: mdl-28798767

ABSTRACT

Cadmium is one of the most widespread pollutant in both terrestrial and marine environment, and its inhibitory effect on plant growth has been largely demonstrated. However, the molecular mechanisms underlying Cd toxicity in plant and mainly in root, as the first organ sensing soil heavy metals, need to be better investigated. To this aim, in the present work we analyzed the growth and the organization of Arabidopsis thaliana primary root in seedlings exposed to Cd (25 and 50 µM) for 8 days starting from germination. Root length, root meristem size, and organization were evaluated together with the behavior of some of the major molecular players in root growth and patterning. In particular, by using different GFP transgenic lines, we monitored: (i) the expression pattern of WOX5 and SCR transcription factors involved in the establishment and maintenance of stem cell niche and in the control of meristem size; (ii) the expression pattern of the IAA-inducible pDR5::GFP reporter, PIN 1, 2, 3, 7 auxin carriers and TCSn::GFP cytokinin-sensitive sensor as relevant components of hormone circuit controlling root growth. We report that Cd exposure inhibits primary root growth via affecting RAM stem cell niche and root radial pattern. At the molecular level, an impairment of auxin maximum accumulation at the root tip, related to a down-regulation and mislocalisation of PIN proteins, and an enhancement of TCSn::GFP cytokinin-sensitive sensor signal is also detected under Cd treatment, thus suggesting an alteration in the homeostasis of auxin/cytokinin signaling. Moreover, and for the first time Cd toxicity on root growth and pattern has been related to a misexpression of SCR transcription factors which is known to interplay with auxin/cytokinin cross-talk in the control of RAM maintenance and activity.

20.
ScientificWorldJournal ; 2016: 4305252, 2016.
Article in English | MEDLINE | ID: mdl-26998509

ABSTRACT

In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.


Subject(s)
Genes, Plant , Olea/genetics , Pollen Tube/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Gene Ontology , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL