Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
J Pathol ; 263(4-5): 418-428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795318

ABSTRACT

Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla. This epigenetic alteration was associated with increased metastatic potential and succinate dehydrogenase complex (SDH) dysfunction. Expanding upon this discovery, the current study explored PCDHGC3 gene methylation within the context of GEP-NENs in a cohort comprising 34 cases. We uncovered promoter hypermethylation of PCDHGC3 in 29% of GEP-NENs, with a significantly higher prevalence in gastrointestinal (GI) neuroendocrine carcinomas (NECs) compared with both pancreatic (Pan) NECs and neuroendocrine tumors (NETs) of GI and Pan origin. Importantly, these findings were validated in one of the largest multi-center GEP-NEN cohorts. Mechanistic analysis revealed that PCDHGC3 hypermethylation was not associated with SDH mutations or protein loss, indicating an SDH-independent epigenetic mechanism. Clinically, PCDHGC3 hypermethylation emerged as a significant prognostic factor, correlating with reduced overall survival rates in both patient cohorts. Significantly, whereas PCDHGC3 hypermethylation exhibited a strong correlation with TP53 somatic mutations, a hallmark of NEC, its predictive value surpassed that of TP53 mutations, with an area under the curve (AUC) of 0.95 (95% CI 0.83-1.0) for discriminating GI-NECs from GI-NETs, highlighting its superior predictive performance. In conclusion, our findings position PCDHGC3 methylation status as a promising molecular biomarker for effectively stratifying patients with GI-NENs. This discovery has the potential to advance patient care by enabling more precise risk assessments and tailored treatment strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Biomarkers, Tumor , Carcinoma, Neuroendocrine , DNA Methylation , Intestinal Neoplasms , Humans , Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Male , Female , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Middle Aged , Cadherins/genetics , Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Epigenesis, Genetic , Promoter Regions, Genetic , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Adult
2.
Front Endocrinol (Lausanne) ; 14: 1162725, 2023.
Article in English | MEDLINE | ID: mdl-37383401

ABSTRACT

Introduction: Paragangliomas (PGL), a type of neuroendocrine tumor, pose a significant diagnostic challenge due to their potential for unpredictable locations and asymptomatic presentation. Misdiagnosis of peripancreatic PGLs, particularly as pancreatic neuroendocrine tumors (PANNETs), is a pressing issue as it can negatively impact both pre- and post-treatment decision-making. The aim of our study was to identify microRNA markers for the reliable differential diagnosis of peripancreatic PGLs and PANNETs, addressing a crucial unmet need in the field and advancing the standard of care for these patients. Methods: Morphing projections tool was used to analyze miRNA data from PGL and PANNET tumors present in the TCGA database. The findings were validated using two additional databases: GSE29742 and GSE73367. Results: Our research uncovered substantial differences in the miRNA expression profiles of PGL and PANNET, leading to the identification of 6 key miRNAs (miR-10b-3p, miR-10b-5p, and the miRNA families miR-200c/141 and miR-194/192) that can effectively differentiate between the two types of tumors. Discussion: These miRNA levels hold potential as biomarkers for improved diagnosis, offering a solution to the diagnostic challenge posed by these tumors and potentially improving the standard of care for patients.


Subject(s)
MicroRNAs , Neuroendocrine Tumors , Pancreatic Neoplasms , Paraganglioma , Humans , MicroRNAs/genetics , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/genetics , Paraganglioma/diagnosis , Paraganglioma/genetics , Databases, Factual , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics
3.
IEEE J Biomed Health Inform ; 27(6): 3083-3092, 2023 06.
Article in English | MEDLINE | ID: mdl-37030704

ABSTRACT

One of the major goals in gene expression data analysis is to explore and discover groups of genes and groups of biological conditions with meaningful relationships. While this problem can be addressed by algorithms, their results require an analysis within context, since they may be affected by many side processes -such as tissue differentiation- that could hinder the target goal. Visual analytics-based methods for exploratory analysis of the gene expression matrix (GEM) are essential in biomedical research since they allow us to frame the analysis within the user's knowledge domain. In this paper, we present a visual analytics approach to discover relevant connections between genes and samples based on linking a reordered GEM heatmap and dual 2D projections of its rows and columns, which can be recomputed conditioned by subsets of genes and/or samples selected by the user during the analysis. We demonstrate the capability of our approach to discover relevant knowledge in three case studies involving two cancer types plus normal tissue from the TCGA database.


Subject(s)
Algorithms , Gene Expression Profiling , Humans , Gene Expression Profiling/methods , Databases, Genetic , Gene Expression
4.
J Pathol ; 259(1): 103-114, 2023 01.
Article in English | MEDLINE | ID: mdl-36314599

ABSTRACT

Metastatic pheochromocytoma and paraganglioma (PPGL) have poor prognosis and limited therapeutic options. The recent advent of immunotherapies showing remarkable clinical efficacies against various cancer types offers the possibility of novel opportunities also for metastatic PPGL. Most PPGLs are pathogenically linked to inactivating mutations in genes encoding different succinate dehydrogenase (SDH) subunits. This causes activation of the hypoxia-inducible factor 2 (HIF2)-mediated transcriptional program in the absence of decreased intratumoral oxygen levels, a phenomenon known as pseudohypoxia. Genuine hypoxia in a tumor creates an immunosuppressive tumor microenvironment. However, the impact of pseudohypoxia in the immune landscape of tumors remains largely unexplored. In this study, tumoral expression of programmed death-ligand 1 (PD-L1) and HIF2α and tumor infiltration of CD8 T lymphocytes (CTLs) were examined in PPGL specimens from 102 patients. We assessed associations between PD-L1, CTL infiltration, HIF2α expression, and the mutational status of SDH genes. Our results show that high PD-L1 expression levels in tumor cells and CTL tumor infiltration were more frequent in metastatic than nonmetastatic PPGL. However, this phenotype was negatively associated with SDH mutations and high HIF2α protein expression. These data were validated by analysis of mRNA levels of genes expressing PD-L1, CD8, and HIF2α in PPGL included in The Cancer Genome Atlas database. Further, PD-L1 and CD8 expression was lower in norepinephrine than epinephrine-secreting PPGL. This in silico analysis also revealed the low PD-L1 or CD8 expression levels in tumors with inactivating mutations in VHL or activating mutations in the HIF2α-coding gene, EPAS1, which, together with SDH-mutated tumors, comprise the pseudohypoxic molecular subtype of PPGL. These findings suggest that pseudohypoxic tumor cells induce extrinsic signaling toward the immune cells promoting the development of an immunosuppressive environment. It also provides compelling support to explore the differential response of metastatic PPGL to immune checkpoint inhibitors. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/genetics , Pheochromocytoma/pathology , B7-H1 Antigen/genetics , Paraganglioma/genetics , Paraganglioma/pathology , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Phenotype , Tumor Microenvironment
5.
Cancers (Basel) ; 14(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35740651

ABSTRACT

Hypoxia-inducible factors (HIF) 2α and 1α are the major oxygen-sensing molecules in eukaryotic cells. HIF2α has been pathogenically linked to paraganglioma and pheochromocytoma (PPGL) arising in sympathetic paraganglia or the adrenal medulla (AM), respectively. However, its involvement in the pathogenesis of paraganglioma arising in the carotid body (CB) or other parasympathetic ganglia in the head and neck (HNPGL) remains to be defined. Here, we retrospectively analyzed HIF2α by immunohistochemistry in 62 PPGL/HNPGL and human CB and AM, and comprehensively evaluated the HIF-related transcriptome of 202 published PPGL/HNPGL. We report that HIF2α is barely detected in the AM, but accumulates at high levels in PPGL, mostly (but not exclusively) in those with loss-of-function mutations in VHL and genes encoding components of the succinate dehydrogenase (SDH) complex. This is associated with upregulation of EPAS1 and the HIF2α-regulated genes COX4I2 and ADORA2A. In contrast, HIF2α and HIF2α-regulated genes are highly expressed in CB and HNPGL, irrespective of VHL and SDH dysfunctions. We also found that HIF2α and HIF1α protein expressions are not correlated in PPGL nor HNPGL. In addition, HIF1α-target genes are almost exclusively overexpressed in VHL-mutated HNPGL/PPGL. Collectively, the data suggest that involvement of HIF2α in the physiology and tumor pathology of human paraganglia is organ-of-origin-dependent and HIF1α-independent.

6.
Free Radic Biol Med ; 188: 287-297, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35753585

ABSTRACT

5-methoxy tryptophan (5-MTP) is an anti-fibrotic metabolite made by fibroblasts and epithelial cells, present in a micromolar concentrations in human blood, and is associated with the progression of fibrotic kidney disease, but the mechanism is unclear. Here, we show by microscopy and functional assays that 5-MTP influences mitochondria in human peripheral blood monocyte-derived macrophages. As a result, the mitochondrial membranes are more rigid, more branched, and are protected against oxidation. The macrophages also change their metabolism by reducing mitochondrial import of acyl-carnitines, intermediates of fatty acid metabolism, driving glucose import. Moreover, 5-MTP increases the endocytosis of collagen by macrophages, and experiments with inhibition of glucose uptake showed that this is a direct result of their altered metabolism. However, 5-MTP does not affect the macrophages following pathogenic stimulation, due to 5-MTP degradation by induced expression of indole-amine oxygenase-1 (IDO-1). Thus, 5-MTP is a fibrosis-protective metabolite that, in absence of pathogenic stimulation, promotes collagen uptake by anti-inflammatory macrophages by altering the physicochemical properties of their mitochondrial membranes.


Subject(s)
Macrophages , Tryptophan , Collagen/metabolism , Fibrosis , Humans , Macrophages/metabolism , Mitochondria/metabolism , Tryptophan/metabolism , Tryptophan/pharmacology
7.
Mater Sci Eng C Mater Biol Appl ; 128: 112357, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474904

ABSTRACT

Bioprinting technology offers layer-by-layer positioning of cells within 3D space with complexity and a defined architecture. Cancer models based in this biofabrication technique are important tools to achieve representative and realistic in vivo conditions of the tumor microenvironment. Here, we show the development of a proof-of-concept three-dimensional bioprinted cancer model that successfully recapitulates the intercellular communication via the assembly of functional tunneling nanotube (TNT)-like cell projections. Different combinations of collagen-containing culture medium, sodium alginate and gelatin were initially prepared and rheologically evaluated. The optimized mixture was used to print two preliminary 3D models for cancer cell seeding. Favourable results in cell viability and proliferation led to the inclusion of 786-O renal cancer cells into the biomaterial mixture to directly bioprint the most suitable 3D model with embedded cells. Bioprinted cells remained viable for at least 15 days of culture and proliferated. More importantly, these cancer cells were able to build TNT-like cellular projections inside the hydrogel that established direct contacts between distant cells. We show that these structures were used as channels for the scrolling and intercellular transfer of mitochondria thus reproducing TNT's function in 2D culture systems. This 3D bioprinted renal cancer model provides a novel alternative tool for studying the functional relevance of TNT-like structures in tumorigenesis and anticancer drug susceptibility in a highly controlled and reproducible tumor microenvironment.


Subject(s)
Bioprinting , Nanotubes , Neoplasms , Gelatin , Hydrogels , Printing, Three-Dimensional
8.
Cancers (Basel) ; 12(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321813

ABSTRACT

Metastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs). The absence of functional FAK rendered cancer cells incapable of invading the surrounding stroma. However, CAFs and cancer cells over-expressing MMP-2 released FAK-deficient cells from this constraint by taking the leader positions in the invasive tracks, pushing FAK-deficient squamous cell carcinoma (SCC) cells towards the stroma and leading to the transformation of non-invasive cells into invasive cells. Our cell-based studies and the RNAseq data from the TCGA cohort of patients with head and neck squamous cell carcinomas reveal that, although both FAK and MMP-2 over-expression are associated with epithelial-mesenchymal transition, it is only MMP-2, not FAK, that functions as an independent prognostic factor. Given the significant role of MMP-2 in cancer dissemination, targeting of this molecule, better than FAK, presents a more promising opportunity to block metastasis.

9.
Cells ; 9(3)2020 03 16.
Article in English | MEDLINE | ID: mdl-32188112

ABSTRACT

Understanding how heterogeneous cancer cell populations migrate collectively is of paramount importance to arrest metastasis. Here, we applied 3D culture-based approaches for in vitro modeling of the collective migration of squamous carcinoma cells and examine the impact of epithelial and mesenchymal cell interactions on this type of migration. We show that both mesenchymal N-cadherin-expressing cancer cells and cancer-associated fibroblasts cooperate in collective migration of epithelial cancer cells by leading their collective migration. This was consistent with the observed distribution of E-cadherin/N-cadherin in the human carcinoma tissues of head and neck. The presence of "leader" mesenchymal cancer cells or "leader" fibroblasts was significantly associated with metastasis development, recurrent disease and low overall disease survival in head and neck squamous cell carcinomas (HNSCC). In silico analysis of independent public datasets revealed that increased N-cadherin expression in the heterogeneous cancer tissues is associated with disease progression not only in HNSCC but also in other prevalent tumors, such as colorectal, breast and lung cancer. Collectively, our data highlight the importance of mesenchymal cells in collective cell migration and disease progression, findings that may have a broad significance in cancer, especially in those in which aberrant N-cadherin expression negatively impacts disease survival.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Communication/physiology , Lung Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/physiology , Epithelial-Mesenchymal Transition/physiology , Humans
10.
Cell Death Dis ; 10(9): 660, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506430

ABSTRACT

The high resistance against current therapies found in non-small-cell lung cancer (NSCLC) has been associated to cancer stem-like cells (CSCs), a population for which the identification of targets and biomarkers is still under development. In this study, primary cultures from early-stage NSCLC patients were established, using sphere-forming assays for CSC enrichment and adherent conditions for the control counterparts. Patient-derived tumorspheres showed self-renewal and unlimited exponential growth potentials, resistance against chemotherapeutic agents, invasion and differentiation capacities in vitro, and superior tumorigenic potential in vivo. Using quantitative PCR, gene expression profiles were analyzed and NANOG, NOTCH3, CD44, CDKN1A, SNAI1, and ITGA6 were selected to distinguish tumorspheres from adherent cells. Immunoblot and immunofluorescence analyses confirmed that proteins encoded by these genes were consistently increased in tumorspheres from adenocarcinoma patients and showed differential localization and expression patterns. The prognostic role of genes significantly overexpressed in tumorspheres was evaluated in a NSCLC cohort (N = 661) from The Cancer Genome Atlas. Based on a Cox regression analysis, CDKN1A, SNAI1, and ITGA6 were found to be associated with prognosis and used to calculate a gene expression score, named CSC score. Kaplan-Meier survival analysis showed that patients with high CSC score have shorter overall survival (OS) in the entire cohort [37.7 vs. 60.4 months (mo), p = 0.001] and the adenocarcinoma subcohort [36.6 vs. 53.5 mo, p = 0.003], but not in the squamous cell carcinoma one. Multivariate analysis indicated that this gene expression score is an independent biomarker of prognosis for OS in both the entire cohort [hazard ratio (HR): 1.498; 95% confidence interval (CI), 1.167-1.922; p = 0.001] and the adenocarcinoma subcohort [HR: 1.869; 95% CI, 1.275-2.738; p = 0.001]. This score was also analyzed in an independent cohort of 114 adenocarcinoma patients, confirming its prognostic value [42.90 vs. not reached (NR) mo, p = 0.020]. In conclusion, our findings provide relevant prognostic information for lung adenocarcinoma patients and the basis for developing novel therapies. Further studies are required to identify suitable markers and targets for lung squamous cell carcinoma patients.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Neoplastic Stem Cells , Spheroids, Cellular , A549 Cells , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
SELECTION OF CITATIONS
SEARCH DETAIL