Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Psychobiol ; 64(3): e22255, 2022 03.
Article in English | MEDLINE | ID: mdl-35312057

ABSTRACT

The development of anxiety disorders is often linked to individuals' negative experience. In many animals, development of anxiety-like behavior is modeled by manipulating individuals' exposure to environmental enrichment. We investigated whether environmental enrichment during early ontogenesis affects anxiety-like behavior in larval zebrafish. Larvae were exposed from hatching to either an environment enriched with 3D-objects of different color and shape or to a barren environment. Behavioral testing was conducted at different intervals during development (7, 14, and 21 days post-fertilization, dpf). In a novel object exploration test, 7 dpf larvae of the two treatments displayed similar avoidance of the visual stimulus. However, at 14 and 21 dpf, larvae of the enriched environment showed less avoidance, indicating lower anxiety response. Likewise, larvae of the two treatments demonstrated comparable avoidance of a novel odor stimulus at 7 dpf, with a progressive reduction of anxiety behavior in the enriched treatment with development. In a control experiment, larvae treated before 7 dpf but tested at 14 dpf showed the effect of enrichment on anxiety, suggesting an early determination of the anxiety phenotype. This study confirms a general alteration of zebrafish anxiety-like behavior due to a short enrichment period in first days of life.


Subject(s)
Behavior, Animal , Zebrafish , Animals , Anxiety , Anxiety Disorders , Behavior, Animal/physiology , Larva/physiology , Zebrafish/physiology
2.
Sci Rep ; 11(1): 11048, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040051

ABSTRACT

Optical recordings of neuronal activity at cellular resolution represent an invaluable tool to investigate brain mechanisms. Zebrafish larvae is one of the few model organisms where, using fluorescence-based reporters of the cell activity, it is possible to optically reconstruct the neuronal dynamics across the whole brain. Typically, leveraging the reduced light scattering, methods like lightsheet, structured illumination, and light-field microscopy use spatially extended excitation profiles to detect in parallel activity signals from multiple cells. Here, we present an alternative design for whole brain imaging based on sequential 3D point-scanning excitation. Our approach relies on a multiphoton microscope integrating an electrically tunable lens. We first apply our approach, adopting the GCaMP6s activity reporter, to detect functional responses from retinal ganglion cells (RGC) arborization fields at different depths within the zebrafish larva midbrain. Then, in larvae expressing a nuclear localized GCaMP6s, we recorded whole brain activity with cellular resolution. Adopting a semi-automatic cell segmentation, this allowed reconstructing the activity from up to 52,000 individual neurons across the brain. In conclusion, this design can easily retrofit existing imaging systems and represents a compact, versatile and reliable tool to investigate neuronal activity across the larva brain at high resolution.


Subject(s)
Brain/physiology , Retinal Ganglion Cells/physiology , Animals , Microscopy, Fluorescence, Multiphoton , Photic Stimulation , Zebrafish
3.
Phys Rev E ; 97(2-1): 022610, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548231

ABSTRACT

We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250µm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.


Subject(s)
Escherichia coli/physiology , Movement , Pseudomonas aeruginosa/physiology , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...