Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37765491

ABSTRACT

Introducing plants in the design of biophilic indoor environments is fundamental for improving human health, well-being, and performance. Previous studies showed that the phenotype of the model plant Arabidopsis thaliana grown under LED-sourced CoeLux® lighting systems was characterized by low biomass production rates, a small leaf area, and a low lamina-to-petiole length ratio, suggesting the onset of a strong shade avoidance syndrome. Therefore, it is essential to identify new strategies to improve plant growth under these peculiar light conditions. In the present work, we investigated the effects of two growing media (i.e., low-fertility soil and soil-less substrate), solid and liquid fertilizers, manure, biochar, perlite, mirror reflection of light, and a 24 h photoperiod on A. thaliana plants growing under CoeLux® lighting systems at a light intensity of 30 µmol m-2s-1. We found that the biochar soil amendment to low-fertility soil increases both the above-ground plant biomass and leaf area. Furthermore, the application of a mirror behind the plants and a continuous photoperiod improves not only the biomass and the leaf area but also the lamina-to-petiole length ratio. The combination of different beneficial treatments can further boost plant growth in the low-intensity light environment characterizing the CoeLux® biophilic lighting systems.

2.
Sci Rep ; 13(1): 6380, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076574

ABSTRACT

After an unusual, late-fall wildfire in a European beech (Fagus sylvatica L.) forest in the pre-Alps of northern Italy, the finest roots (0‒0.3 mm diameter) were generally the most responsive to fire, with the effect more pronounced at the shallowest soil depth. While roots 0.3‒1 mm in diameter had their length and biomass at the shallowest soil depth reduced by fire, fire stimulated more length and biomass at the deepest soil depth compared to the control. Fire elevated the total length of dead roots and their biomass immediately and this result persisted through the first spring, after which control and fire-impacted trees had similar fine root turnover. Our results unveiled the fine-root response to fire when subdivided by diameter size and soil depth, adding to the paucity of data concerning fire impacts on beech roots in a natural condition and providing the basis for understanding unusual fire occurrence on root traits. This study suggests that F. sylvatica trees can adapt to wildfire by plastically changing the distribution of fine-root growth, indicating a resilience mechanism to disturbance.


Subject(s)
Fagus , Wildfires , Soil , Plant Roots , Forests , Trees
3.
Front Plant Sci ; 14: 1093883, 2023.
Article in English | MEDLINE | ID: mdl-36743499

ABSTRACT

Investigating morphological and molecular mechanisms that plants adopt in response to artificial biophilic lighting is crucial for implementing biophilic approaches in indoor environments. Also, studying the essential oils (EOs) composition in aromatic plants can help unveil the light influence on plant metabolism and open new investigative routes devoted to producing valuable molecules for human health and commercial applications. We assessed the growth performance and the EOs composition of Mentha x piperita and Ocimum basilicum grown under an innovative artificial biophilic lighting system (CoeLux®), that enables the simulation of natural sunlight with a realistic sun perception, and compared it to high-pressure sodium lamps (control) We found that plants grown under the CoeLux® light type experienced a general suppression of both above and belowground biomass, a high leaf area, and a lower leaf thickness, which might be related to the shade avoidance syndrome. The secondary metabolites composition in the plants' essential oils was scarcely affected by both light intensity and spectral composition of the CoeLux® light type, as similarities above 80% were observed with respect to the control light treatments and within both plant species. The major differences were detected with respect to the EOs extracted from plants grown under natural sunlight (52% similarity in M. piperita and 75% in O. basilicum). Overall, it can be speculated that the growth of these two aromatic plants under the CoeLux® lighting systems is a feasible strategy to improve biophilic approaches in closed environments that include both plants and artificial sunlight. Among the two plant species analyzed, O. basilicum showed an overall better performance in terms of both morphological traits and essential oil composition. To increase biomass production and enhance the EOs quality (e.g., higher menthol concentrations), further studies should focus on technical solutions to raise the light intensity irradiating plants during their growth under the CoeLux® lighting systems.

4.
Front Plant Sci ; 13: 878299, 2022.
Article in English | MEDLINE | ID: mdl-35958214

ABSTRACT

In this study, we assessed the functional and architectural traits in the coarse roots of Ulmus pumila trees, which are used for afforesting the semi-arid steppe of Mongolia. Tree growth was supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and compost). In July, 2019, for each of these treatments six trees, outplanted in 2011 as 2-year-old seedlings from a container nursery, were randomly selected, excavated by hand, and digitized. The build-up of root length correlated positively with increasing levels of watering for both soil depths analyzed. The application of fertilizers led to root growth suppression resulting in a general reduction of root length in a lowered rooting depth. When root system characteristics were analyzed in relation to wind direction, unfertilized trees showed higher root diameter values in both soil layers of leeward quadrants, likely a response to mechanical forces to improve stability. On the contrary, fertilized trees did not show differences in root diameter among the different quadrants underscoring a strong reduction in root plasticity with a lack of morpho-architectural response to the mechanical forces generated by the two prevailing winds. Finally, the root branching density, another important trait for fast dissipation of mechanical forces, was significantly reduced by the fertilization, independently of the quadrants and watering regime. Our results suggest that knowledge of the root response to the afforestation techniques applied in the semi-arid steppe of Mongolia is a necessary step for revealing the susceptibility of this forest shelterbelt to the exacerbating environmental conditions caused by climate change and, thus, to the development of a sustainable and successful strategy to restore degraded lands.

5.
PLoS One ; 17(6): e0269868, 2022.
Article in English | MEDLINE | ID: mdl-35687579

ABSTRACT

Using specific photoreceptors, plants can sense light signals fundamental to their growth and development under changing light conditions. Phytochromes sense red and far-red light, cryptochromes and phototropins sense UV-A and blue light, while the UVR8 gene senses UV-B signals. The study of the molecular mechanisms used by plants to respond to artificial biophilic lighting is of pivotal importance for the implementation of biophilic approaches in indoor environments. CoeLux® is a new lighting system that reproduces the effect of natural sunlight entering through an opening in the ceiling, with a realistic sun perceived at an infinite distance surrounded by a clear blue sky. We used the model plant Arabidopsis thaliana to assess the gene expression of the main plant photoreceptors at different light intensities and at different times after exposure to the CoeLux® light type, using high-pressure sodium (HPS) lamps as control light type. Genes belonging to different families of photoreceptors showed a similar expression pattern, suggesting the existence of a common upstream regulation of mRNA transcription. In particular, PHYA, PHYC, PHYD, CRY1, CRY2, PHOT1, and UVR8, showed a common expression pattern with marked differences between the two light types applied; under the HPS light type, the expression levels are raising with the decrease of light intensity, while under the CoeLux® light type, the expression levels remain nearly constant at a high fold. Moreover, we showed that under biophilic illumination the light spectrum plays a crucial role in the response of plants to light intensity, both at the molecular and morphological levels.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Apoproteins/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Gene Expression , Gene Expression Regulation, Plant , Lighting , Phytochrome/metabolism
7.
Plants (Basel) ; 10(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34834771

ABSTRACT

Desertification is impeding the implementation of reforestation efforts in Mongolia. Many of these efforts have been unsuccessful due to a lack of technical knowledge on water and nutrient management strategies, limited financial support, and short-lived rainfall events. We investigated the effects of irrigation and fertilization on the morphophysiological traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. and to suggest irrigation and fertilization strategies for reforestation. Different irrigation and fertilizer treatments were applied: no irrigation, 2 L h-1, 4 L h-1, and 8 L h-1 of water; no fertilizer, 2 L h-1 + NPK, 4 L h-1 + NPK, and 8 L h-1 + NPK; and no compost, 2 L h-1 + compost, 4 L h-1 + compost, and 8 L h-1 + compost. The leaf area (LA) and specific leaf area (SLA) of both species responded positively to 4 and 8 L h-1. Results also showed that the addition of either NPK or compost to 4 or 8 L h-1 irrigation resulted in a higher LA, SLA, and leaf biomass (LB). Total chlorophyll content decreased with irrigation in both species. The same pattern was detected when a higher amount of irrigation was combined with fertilizers. Lastly, we found that both diurnal and seasonal leaf water potential of plants grown in 4 or 8 L h-1 were significantly higher than those of plants grown in control plots. Therefore, 4 or 8 L h-1 with either NPK or compost has shown to be the optimal irrigation and fertilization strategy for the species in an arid and semiarid region of Mongolia. Results should provide us with a better understanding of tree responses to varying amounts of irrigation with or without fertilizer in pursuit of sustainable forest management in arid and semiarid ecosystems.

8.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: mdl-34685524

ABSTRACT

Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure "meristematic connectome" given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the "meristematic connectome" could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.


Subject(s)
Cambium/metabolism , Meristem/cytology , Plant Proteins/metabolism , Connectome/methods , Environment , Plants
9.
Plants (Basel) ; 10(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203336

ABSTRACT

The CoeLux® lighting system reproduces the true effect of natural sunlight entering through an opening in the ceiling, with a realistic sun perceived at an infinite distance surrounded by a clear blue sky. It has already been demonstrated that this new lighting system generates long-term positive effects on human beings; however, there are no investigations so far concerning the plant responses to CoeLux® lighting. To fill this gap, the model plant Arabidopsis thaliana L. was grown at four different distances from the light source, corresponding to four different light intensities (120, 70, 30, 20 µmol m-2 s-1). High-pressure sodium lamps were used as control light. Plant phenology and morpho-physiological traits were monitored to assess for the first time the ability of plants to grow and develop under the light spectrum and intensity of the CoeLux® system. Plants grown at the lower light intensities showed a delayed life cycle and were significantly smaller than plants grown with more light. Furthermore, plants grown under the CoeLux® light type showed an additional deficit when compared to control plants. Overall, our results show that both the light spectrum and intensity of the CoeLux® system had a strong impact on A. thaliana growth performance.

10.
Front Plant Sci ; 12: 638828, 2021.
Article in English | MEDLINE | ID: mdl-33968099

ABSTRACT

Desertification of the semi-arid steppe of Mongolia is advancing very rapidly, motivating afforestation efforts. The "Green Belt" joint project (Government of Mongolia and Republic of Korea), which aims to mitigate soil degradation and develop agroforestry activities through the planting of a forest shelterbelt, is one such response. In these plantations, tree growth has been supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and Compost). The present paper analyses the effect of these techniques on soil chemistry and root biomass partitioning of Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) tree species. In July 2019, at the plantation site in Lun Soum, Tuv province (Mongolia), six trees were excavated by hand in each treatment, the root system was divided into taproot and five diameter classes (0-2; 2-5; 5-10; 10-20; > 20 mm), and the biomass was measured. Soil organic matter, macronutrients, and pH were also measured. The addition of fertilizers in the long-term did not enhance the soil chemical properties. The build-up of root biomass in both species correlated positively with increasing levels of the watering, while the application of fertilizers led to root growth suppression. For most of the root classes and both species, an irrigation level of 4 L h-1 was sufficient to yield the highest biomass and could be recommended for afforesting the semi-arid steppe of Mongolia. The root biomass of P. sibirica was more dependent on the watering regimes and of U. pumila was more negatively influenced by the application of fertilizers, indicating that U. pumila, due to the its lower water need, could be suitable for afforesting semi-arid environments. Our experiments suggest that afforestation practices in the semi-arid steppe of Mongolia should be supported by a prior analysis of plants' needs, soil type, dose, and type of fertilizers to be applied. Knowledge of the root response to the supporting techniques is necessary for choosing the best one for the plantation and, thus, to develop a sustainable and successful strategy to restore these degraded lands.

11.
Sci Total Environ ; 751: 141455, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32889452

ABSTRACT

The present work analyzes the impact of biochar-induced modification of soil physico-chemical properties on intra-annual growth dynamics of pioneer and fibrous grapevine roots. A scanner inserted into a buried rhizobox with a transparent side facing the plant root system was used to acquire images of pioneer and fibrous roots of control and biochar-treated plants throughout the vegetative season. Images were analyzed with ImageJ software to measure root traits. Biochar treatment increased soil pH, nutrient concentration, and water content during the driest and warmest period, while bulk density was reduced. Analysis of both pioneer and fibrous root traits highlighted a single peak of growth during the vegetative season. Pioneer roots were thicker and grew faster than fibrous roots, which were longer and more numerous. Amelioration of physico-chemical properties of biochar-amended soil stimulated an earlier root lengthening, and a higher root number at the onset of the season, which resulted in a greater canopy development compared to control plants. Later, in summer, as a consequence of the higher water content of biochar-treated soil, plants modified their root architecture, lowering the number of fibrous roots probably because of the reduced need to exploit soil for water and nutrient uptake.


Subject(s)
Soil , Vitis , Charcoal , Fertility , Plant Roots , Seasons
12.
Front Plant Sci ; 11: 590985, 2020.
Article in English | MEDLINE | ID: mdl-33363556

ABSTRACT

Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent.

13.
Sci Rep ; 10(1): 18890, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144589

ABSTRACT

Despite the large amounts of data available on lateral root formation, little is known about their initiation from secondary structures. In the present work, we applied a bending treatment to Populus nigra (L.) woody taproots to induce the formation of new lateral roots. The development of lateral roots was monitored by stereomicroscopic examination of cross-sections. Tissues were sampled from the bending zone in the proximity of the vascular cambium before (time 0) and after the application of bending at three different time points (24, 48, and 72 h) and analyzed for the expression of P. nigra WOX homologs. The initiation of new lateral roots was observed to originate from the vascular cambium zone and was followed by primordium formation and root emergence. PnWOX4a, PnWOX4b, PnWOX5a, PnWOX5b, PnWOX11/12a, and PnWOX11/12b were shown to be expressed during the formation of new lateral roots at different developmental stages. The mechanical stress simulated by bending treatment was shown to activate the molecular mechanism leading to the expression of WOX genes, which are hypothesized to control SLR formation in the cambium zone of poplar taproot.


Subject(s)
Cambium/growth & development , Homeodomain Proteins/genetics , Populus/growth & development , Cambium/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Populus/genetics , Stress, Mechanical
14.
Plants (Basel) ; 9(2)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024307

ABSTRACT

: The coarse roots of Pinus ponderosa included in the cage are the ones most involved in tree stability. This study explored the variations in traits, such as volume, cross-sectional area, and radius length of cage roots, and used those data to develop a mathematical model to better understand the type of forces occurring for each shallow lateral root segment belonging to different quadrants of the three-dimensional (3D) root system architecture. The pattern and intensity of these forces were modelled along the root segment from the branching point to the cage edge. Data of root cage volume in the upper 30 cm of soil showed a higher value in the downslope and windward quadrant while, at a deeper soil depth (> 30 cm), we found higher values in both upslope and leeward quadrants. The analysis of radius length and the cross-sectional area of the shallow lateral roots revealed the presence of a considerable degree of eccentricity of the annual rings at the branching point and at the cage edge. This eccentricity is due to the formation of compression wood, and the eccentricity changes from the top portion at the branching point to the bottom portion at the cage edge, which we hypothesize may be a response to the variation in mechanical forces occurring in the various zones of the cage. This hypothesis is supported by a mathematical model that shows how the pattern and intensity of different types of mechanical forces are present within the various quadrants of the same root system from the taproot to the cage edge.

15.
Front Plant Sci ; 10: 947, 2019.
Article in English | MEDLINE | ID: mdl-31417581

ABSTRACT

We excavated the root systems of Pinus ponderosa trees growing on a steeply sloped, volcanic ash-influenced soil in the northern Rocky Mountains of the United States to assess their functional coarse-root traits and root system architecture. Trees, outplanted as one-year-old seedlings from a container nursery, were in their 32nd growing season on the site. We found that the trees had deployed more roots, in terms of length and volume, in the downslope and windward quadrants than in their upslope and leeward quadrants, likely a response to mechanical forces toward improving stability. Moreover, we observed the development of three types of root cages (tight, enlarged, and diffused) that likely reflect micro-site characteristics. As the cage type transitioned from tight to enlarged to diffused we measured a decrease in the overall volume of the roots associated with the cage and the taproot becoming a more prominent contributor to the overall volume of the cage. Finally, we noted the development of specialty roots, namely those with I-beam and T-beam shapes in cross section, in the downslope quadrant; these types of roots are known to better counteract compression mechanical forces. These observations improve our understanding of root plasticity and tree rooting response to environmental stimuli, which is becoming an increasingly critical topic as changes in climate increase the frequency and intensity of storms.

17.
Ann Bot ; 122(5): 697-710, 2018 11 03.
Article in English | MEDLINE | ID: mdl-29394314

ABSTRACT

Background: The production of a new lateral root from parental root primary tissues has been investigated extensively, and the most important regulatory mechanisms are now well known. A first regulatory mechanism is based on the synthesis of small peptides which interact ectopically with membrane receptors to elicit a modulation of transcription factor target genes. A second mechanism involves a complex cross-talk between plant hormones. It is known that lateral roots are formed even in parental root portions characterized by the presence of secondary tissues, but there is not yet agreement about the putative tissue source providing the cells competent to become founder cells of a new root primordium. Scope: We suggest models of possible regulatory mechanisms for inducing specific root vascular cambium (VC) stem cells to abandon their activity in the production of xylem and phloem elements and to start instead the construction of a new lateral root primordium. Considering the ontogenic nature of the VC, the models which we suggest are the result of a comparative review of mechanisms known to control the activity of stem cells in the root apical meristem, procambium and VC. Stem cells in the root meristems can inherit various competences to play different roles, and their fate could be decided in response to cross-talk between endogenous and exogenous signals. Conclusions: We have found a high degree of relatedness among the regulatory mechanisms controlling the various root meristems. This fact suggests that competence to form new lateral roots can be inherited by some stem cells of the VC lineage. This kind of competence could be represented by a sensitivity of specific stem cells to factors such as those presented in our models.


Subject(s)
Gene Regulatory Networks , Plant Development/genetics , Plant Roots/growth & development , Cambium/genetics , Cambium/growth & development , Meristem/growth & development , Plant Roots/genetics , Stem Cells/physiology
18.
Front Plant Sci ; 7: 1644, 2016.
Article in English | MEDLINE | ID: mdl-27840632

ABSTRACT

A plant phenotyping approach was applied to evaluate growth rate of containerized tree seedlings during the precultivation phase following seed germination. A simple and affordable stereo optical system was used to collect stereoscopic red-green-blue (RGB) images of seedlings at regular intervals of time. Comparative analysis of these images by means of a newly developed software enabled us to calculate (a) the increments of seedlings height and (b) the percentage greenness of seedling leaves. Comparison of these parameters with destructive biomass measurements showed that the height traits can be used to estimate seedling growth for needle-leaved plant species whereas the greenness trait can be used for broad-leaved plant species. Despite the need to adjust for plant type, growth stage and light conditions this new, cheap, rapid, and sustainable phenotyping approach can be used to study large-scale phenome variations due to genome variability and interaction with environmental factors.

19.
Ann Bot ; 118(4): 865-883, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27558889

ABSTRACT

Background and Aims Progress has been made in understanding the physiological and molecular basis of root response to mechanical stress, especially in the model plant Arabidopsis thaliana, in which bending causes the initiation of lateral root primordia toward the convex side of the bent root. In the case of woody roots, it has been reported that mechanical stress induces an asymmetric distribution of lateral roots and reaction wood formation, but the mechanisms underlying these responses are largely unknown. In the present work, the hypothesis was tested that bending could determine an asymmetric response in the two sides of the main root axis as cells are stretched on the convex side and compressed on the concave side. Methods Woody taproots of 20 seedlings were bent to an angle of 90° using a steel net. Changes in the anatomy, lignin and phytohormone content and proteome expression in the two sides of the bent root were analysed; anatomical changes, including dissimilarities and similarities to those found in poplar bent woody stem, were also considered. Key Results Compression forces at the concave side of poplar root induced the formation of reaction wood which presented a high lignin content and was associated with the induction of cambium cell activity. Auxin seemed to be the main hormone triggering lignin deposition and cell wall strengthening in the concave sides. Abscisic acid appeared to function in the water stress response induced by xylem structures and/or osmotic alterations in the compression sides, whereas gibberellins may control cell elongation and gravitropisms. Conclusions Poplar root reaction wood showed characteristics different from those produced in bent stem. Besides providing biomechanical functions, a bent root ensures water uptake and transport in the deforming condition induced by tension and compression forces by two different strategies: an increase in xylem thickness in the compressed side, and lateral root formation in the tension side.

20.
Physiol Plant ; 156(3): 294-310, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26263877

ABSTRACT

Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter < 0.5 mm) and fine (0.5-1 mm) root morphology and physiology in terms of respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected.


Subject(s)
Acclimatization/physiology , Global Warming , Plant Roots/cytology , Plant Roots/physiology , Soil , Starch/metabolism , Biomass , Carbohydrates/analysis , Cell Respiration , Desiccation , Fagus , Hot Temperature , Multivariate Analysis , Plant Roots/anatomy & histology , Plant Roots/metabolism , Principal Component Analysis , Solubility , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...