Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Sci Rep ; 12(1): 5793, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388069

ABSTRACT

Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e-04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.


Subject(s)
Genome-Wide Association Study , Secale , Genetic Linkage , Phenotype , Plant Development , Secale/metabolism
2.
Foods ; 11(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267277

ABSTRACT

The nutritional quality of common wheat-based foods can be improved by adding flours from whole pulses or their carbohydrate and protein constituents. Faba bean (Vicia faba L.) is a pulse with high protein concentration. In this study, prepared faba bean (FB) flours were added to wheat based baked crackers. Wheat cracker recipes were modified by substituting forty percent wheat flour with flours from whole faba bean, starch enriched flour (starch 60%), protein concentrate (protein 60%) or protein isolate (protein 90%). Baked crackers were ground into meal and analyzed for their macronutrient composition, starch characteristics and in vitro starch hydrolysis. Faba bean supplemented crackers had lower (p ≤ 0.001) total starch concentrations, but proportionally higher protein (16.8-43%), dietary fiber (6.7-12.1%), fat (4.8-7.1%) and resistant starch (3.2-6%) (p ≤ 0.001) than wheat crackers (protein: 16.2%, dietary fiber: 6.3%, fat: 4.2, resistant starch: 1.2%). The increased amylose, amylopectin B1- chain and fat concentration from faba bean flour and starch flour supplementation in cracker recipe contributed to increased resistant starch. Flours from whole faba bean, starch or protein fractions improved the nutritional properties and functional value of the wheat-based crackers. The analytical analysis describing protein, starch composition and structure and in vitro enzymatic hydrolysis advance understanding of factors that account for the in vivo benefits of faba bean flours added to crackers in human physiological functions as also previously shown for pasta. The findings can be used to guide development of improve nutritional quality of similar wheat-based food products.

3.
Plants (Basel) ; 10(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34834817

ABSTRACT

Overwintering cereals accumulate low temperature tolerance (LTT) during cold acclimation in the autumn. Simultaneously, the plants adjust to the colder season by making developmental changes at the shoot apical meristem. These processes lead to higher winter hardiness in winter rye varieties (Secale cereale L.) adapted to Northern latitudes as compared to other cereal crops. To dissect the winter-hardiness trait in rye, a panel of 96 genotypes of different origins and growth habits was assessed for winter field survival (WFS), LTT, and six developmental traits. Best Linear Unbiased Estimates for WFS determined from five field trials correlated strongly with LTT (r = 0.90, p < 0.001); thus, cold acclimation efficiency was the major contributor to WFS. WFS also correlated strongly (p < 0.001) with final leaf number (r = 0.80), prostrate growth habit (r = 0.61), plant height (r = 0.34), but showed weaker associations with top internode length (r = 0.30, p < 0.01) and days to anthesis (r = 0.25, p < 0.05). The heritability estimates (h2) for WFS-associated traits ranged from 0.45 (prostrate growth habit) to 0.81 (final leaf number) and were overall higher than for WFS (h2 = 0.48). All developmental traits associated with WFS and LTT are postulated to be regulated by phytohormone levels at shoot apical meristem.

4.
J Plant Physiol ; 265: 153494, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34454370

ABSTRACT

Raffinose, stachyose and verbascose form the three major members of the raffinose family oligosaccharides (RFO) accumulated during seed development. Raffinose synthase (RS; EC 2.4.1.82) and stachyose synthase (STS; EC 2.4.1.67) have been associated with raffinose and stachyose synthesis, but the precise mechanism for verbascose synthesis is not well understood. In this study, full-length RS (2.7 kb) and STS (2.6 kb) clones were isolated by screening a cDNA library prepared from developing lentil seeds (18, 20, 22 and 24 days after flowering [DAF]) to understand the roles of RS and STS in RFO accumulation in developing lentil seeds. The nucleotide sequences of RS and STS genes were similar to those reported for Pisum sativum. Patterns of transcript accumulation, enzyme activities and RFO concentrations were also comparable to P. sativum. However, during lentil seed development raffinose, stachyose and verbascose accumulation corresponded to transcript accumulation for RS and STS, with peak transcript abundance occurring at about 22-24 DAF, generally followed by a sequential increase in raffinose, stachyose and verbascose concentrations followed by a steady level thereafter. Enzyme activities for RS, STS and verbascose synthase (VS) also indicated a sudden increase at around 24-26 DAF, but with an abrupt decline again coinciding with the subsequent steady state increase in the RFO. Galactan:galactan galactosyl transferase (GGT), the galactinol-independent pathway enzyme, however, exhibited steady increase in activity from 24 DAF onwards before abruptly decreasing at 34 DAF. Although GGT activity was detected, isolation of a GGT sequence from the cDNA library was not successful.


Subject(s)
Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Lens Plant/enzymology , Lens Plant/genetics , Oligosaccharides/biosynthesis , Raffinose/biosynthesis , Seeds/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Lens Plant/growth & development , Oligosaccharides/genetics , Raffinose/genetics , Seeds/enzymology , Seeds/genetics
5.
Food Chem ; 349: 129167, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33567351

ABSTRACT

Faba bean (Vicia faba L.) flour, starch concentrate (60% starch), protein concentrate (~60% protein) and protein isolate (~85% protein) were added to replace one-quarter of durum wheat semolina to enrich the nutritional quality and physiological functions of durum wheat (Triticum turgidum L.) pasta. The raw pasta samples prepared with protein concentrate or isolate had higher (p ≤ 0.001) protein and lower (p ≤ 0.001) total starch concentrations, along with increased total dietary fiber and slowly digestible starch (p ≤ 0.001) than durum wheat semolina control or those with added whole faba-bean flour or isolated starch. The faba bean fortified pasta had altered starch with increased proportion of medium B-type glucan chains and long C-type glucan chains, reduced starch digestibility and were associated with glycaemia related effects in the human diet. The faba bean fortified pasta had increased protein and dietary fiber that influenced food intake and satiety. The results suggest differential contributions of food ingredients in human health outcomes.


Subject(s)
Food, Fortified , Triticum/chemistry , Vicia faba/chemistry , Blood Glucose/metabolism , Dietary Fiber/metabolism , Dietary Supplements , Flour , Humans , Meals , Nutritive Value , Starch/chemistry
6.
Plant Pathol J ; 36(6): 558-569, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33312091

ABSTRACT

Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDPglucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

7.
Plant Physiol Biochem ; 154: 369-378, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32623092

ABSTRACT

Brassinosteroids (BR) are plant-based steroids which influence several morphogenetic and developmental processes. A barley (Hordeum vulgare L.) genotype Kinai Kyoshinkai-2 (KK-2) carrying the uzu mutation exhibited altered starch granule size distribution. Hybridizing KK-2 with a barley genotype CDC Kendall with bi-modal starch granules produced progeny lines (116, 144 and 168) with almost uni-modal starch granules. Bioassays correlated uzu mutation with defective BR perception. DNA sequence analysis of the BR receptor-1 (BRI-1) gene detected a single-nucleotide A > G substitution at the position 2612 in the kinase domain which resulted in the change of His (CAC) to Arg (CGC) at residue 857 in subdomain IV of the kinase domain of the respective polypeptide. The study focused on the development of barley grain, accumulation of starch and composition influenced by defective BR perception due to the mutation detected in KK-2 and three other barley-breeding lines (116, 144 and 168). Aberrant BRI-1 delayed grain development, amylose synthesis and starch accumulation in the endosperm. The barley breeding lines 116, 144 and 168 carrying the aberrant BRI-1, exhibited altered granule size distribution with significant shift in the diameter maxima, but insignificant differences in amylose concentration. The BRI-1 mutation also altered amylopectin fine structure in both B- and C- type small starch granules, resulting in an increased fraction of short A-type glucan chains (<10 DP) and decreased fraction of B2 chains (25-36 DP) in genotypes carrying the BRI-1 mutation. The results show the influence of BR on barley grain development, starch accumulation, granule size distribution and amylopectin structure.


Subject(s)
Brassinosteroids , Hordeum/genetics , Plant Proteins/genetics , Receptors, Steroid/genetics , Starch/chemistry , Amylose/chemistry , Mutation , Seeds/chemistry
8.
PLoS One ; 14(12): e0226695, 2019.
Article in English | MEDLINE | ID: mdl-31856194

ABSTRACT

Fusarium head blight (FHB) in wheat (Triticum aestivum L.), predominantly caused by Fusarium graminearum, has been categorized into three chemotypes depending on the major mycotoxin produced. The three mycotoxins, namely, 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol (NIV) also determine their aggressiveness and response to fungicides. Furthermore, prevalence of these chemotypes changes over time and dynamic changes in chemotypes population in the field have been observed. The objective of this study was to identify spike culture derived variants (SCDV) exhibiting resistance to multiple chemotypes of F. graminearum. First, the optimal volume of inoculum for point inoculation of the spikelets was determined using the susceptible AC Nanda wheat genotype. Fifteen µL of 105 macroconidia/mL was deemed optimal based on FHB disease severity assessment with four chemotypes. Following optimal inoculum volume determination, five chemotypes (Carman-NIV, Carman-705-2-3-ADON, M9-07-1-3-ADON, M1-07-2-15-ADON and China-Fg809-15-ADON) were used to point inoculate AC Nanda spikelets to confirm the mycotoxin produced and FHB severity during infection. Upon confirmation of the mycotoxins produced by the chemotypes, 55 SCDV were utilized to evaluate FHB severity and mycotoxin concentrations. Of the 55 SCDV, five (213.4, 244.1, 245.6, 250.2 and 252.3) resistant lines were identified with resistance to multiple chemotypes and are currently being utilized in a breeding program to develop wheat varieties with improved FHB resistance.


Subject(s)
Disease Resistance , Fusarium/pathogenicity , Triticum/immunology , Fusarium/classification , Fusarium/metabolism , Mycotoxins/toxicity , Plant Breeding , Trichothecenes/toxicity , Triticum/drug effects , Triticum/microbiology
9.
Food Funct ; 10(11): 7476-7488, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31670336

ABSTRACT

The hypothesis that adding faba bean (FB) flour and its macronutrient concentrated flours to pasta reduces postprandial glycaemia and increases satiety was tested in 54 young adult males. Each consumed a serving of pasta made from durum wheat semolina (DWS) alone, or DWS flour with 25% of flours from whole FB (FBF), starch concentrate (FBS), protein concentrate (FBPC), or protein isolate (FBPI). Post-consumption measurements included postprandial blood glucose, insulin, C-peptide, GLP-1 and PYY, and subjective appetite, over 120 min. Second meal effects of treatments were assessed after participants consumed either an ad libitum or fixed size meal (12 kcal kg-1) at a pizza meal at 120 min. Additions of FB flours from FBPC and FBPI reduced postprandial glycaemia and appetite, increased protein content and quality of the pastas and PYY and C-peptide responses, but had no effect on plasma insulin or GLP-1. In conclusion, DWS pastas with added faba bean protein flour reduce postprandial BG and appetite and have higher nutritional quality. The clinical trial registry number is NCT02658591 .


Subject(s)
Appetite , Blood Glucose , Flour , Satiation , Vicia faba , Adult , C-Peptide , Dietary Proteins , Dipeptides , Drinking , Feeding Behavior , Glucagon-Like Peptide 1 , Humans , Insulin/blood , Male , Taste , Young Adult
10.
J Food Sci Technol ; 56(1): 391-400, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30728582

ABSTRACT

In human diet, the products of starch digestion are a major energy source. Starch is stored as water insoluble granules composed of amylose and amylopectin. The susceptibility of starch granule to digestive enzymes is affected by starch granule size, shape, and composition. In this study, starch characteristics and in vitro enzymatic hydrolysis in three rice (Oryza sativa L.) mutants (RSML 184, RSML 278 and RSML 352) with similar amylose concentration (24.3-25.8%) was compared to parent ADT 43 (21.4%). The three mutants had reduced thousand grain weight and starch concentration but higher protein and dietary fiber concentrations. The mutant RSML 352 had small starch granules and reduced short glucan chains [Degree of polymerization (DP) 6-12] compared to the other two mutants (RSML 184 and RSML 278). The mutant RSML 352 had the highest hydrolytic index (HI) and least concentration of resistant starch (RS) compared to the other two mutants and parent rice ADT 43. The two rice mutants (RSML 184 and RSML 278) had reduced HI and increased RS concentration than the parent ADT 43. The results showed that starch granule size and amylopectin structure influence starch enzymatic digestibility and RS concentration.

11.
Theor Appl Genet ; 132(4): 1263-1281, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30661107

ABSTRACT

KEY MESSAGE: Major QTL on LG 1 and 3 control seed filling and seed coat development, thereby affecting seed shape, size, color, composition and weight, key determinants of crop yield and quality. A chickpea (Cicer arietinum L.) population consisting of 189 recombinant inbred lines (RILs) derived from a cross between medium-protein ICC 995 and high-protein ICC 5912 genotypes of the desi market class was analyzed for seed properties. Seed from the parental lines and RILs was produced in four different environments for determination of seed shape (SS), 100-seed weight (100-SW), protein (PRO) and starch (STA) concentration. Polymorphic genetic markers for the population were identified by Genotyping by Sequencing and assembled into a 522.5 cM genetic map. Phenotype data from the different growth environments were analyzed by QTL mapping done by single and multi-environment analyses and in addition, single marker association mapping. The analyses identified in total 11 QTL, of which the most significant (P < 0.05) loci were located on LG 1 (q-1.1), LG 2 (q-2.1), LG 3 (q-3.2, q-3.3), LG 4 (q-4.2), and LG 5 (q-5.1). STA was mostly affected by q-1.1, which explained 19.0% of the phenotypic variance for the trait. The largest QTL effects were demonstrated by q-3.2 that explained 52.5% of the phenotypic variances for 100-SW, 44.3% for PRO, and 14.6% for SS. This locus was also highly associated with flower color (COL; 95.2% explained) and showed q-3.2 alleles from the ICC 5912 parent conferred the blue flower color and production of small, round seeds with relatively high protein concentration. Genes affecting seed filling at q-1.1 and seed coat development at q-3.2, respectively, were considered to underlie differences in seed composition and morphology in the RIL population.


Subject(s)
Cicer/anatomy & histology , Cicer/genetics , Genome, Plant , Plant Proteins/genetics , Seeds/anatomy & histology , Seeds/genetics , Chromosome Mapping , Crosses, Genetic , Epistasis, Genetic , Genetic Markers , Inbreeding , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
12.
Phytopathology ; 108(1): 124-132, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29063821

ABSTRACT

An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.


Subject(s)
Fusarium/physiology , Genome, Plant/genetics , Glucosyltransferases/genetics , Plant Diseases/immunology , Polymorphism, Single Nucleotide/genetics , Trichothecenes/metabolism , Triticum/genetics , Disease Resistance/genetics , Edible Grain/enzymology , Edible Grain/genetics , Edible Grain/microbiology , Edible Grain/physiology , Glucosyltransferases/metabolism , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/enzymology , Triticum/microbiology , Triticum/physiology
13.
BMC Plant Biol ; 17(1): 13, 2017 01 14.
Article in English | MEDLINE | ID: mdl-28088172

ABSTRACT

BACKGROUND: Glycemic response, a trait that is tedious to be assayed in cereal staples, has been identified as a factor correlated with alarmingly increasing prevalence of Type II diabetes. Reverse genetics based discovery of allelic variants associated with this nutritional trait gains significance as they can provide scope for genetic improvement of this factor which is otherwise difficult to target through routine screening methods. RESULTS: Through EcoTILLING by sequencing in 512 rice accessions, we report the discovery of six deleterious variants in the genes with potential to increase Resistant Starch (RS) and reduce Hydrolysis Index (HI) of starch. By deconvolution of the variant harbouring EcoTILLING DNA pools, we discovered accessions with a minimum of one to a maximum of three deleterious allelic variants in the candidate genes. CONCLUSIONS: Through biochemical assays, we confirmed the potential role of the discovered alleles alone or in combinations in increasing RS the key factor for reduction in glycemic response.


Subject(s)
Oryza/enzymology , Plant Proteins/genetics , Polymorphism, Genetic , Starch Synthase/genetics , Starch/metabolism , Alleles , Mutation , Oryza/classification , Oryza/genetics , Plant Proteins/metabolism , Sequence Analysis, DNA , Starch Synthase/metabolism
14.
J Sci Food Agric ; 97(3): 743-752, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27145288

ABSTRACT

BACKGROUND: The structure of ß-glucan influences its use in cereal-based foods and feed. The objective of this study was to determine the effect of environment (E) and genotype (G) on ß-glucan fine structure and its genetic control in two-row spring barley with normal starch characteristics. RESULTS: A population of 89 recombinant inbred lines, derived from the cross of two-row spring barley genotypes Merit × H93174006 (H92076F1 × TR238), was characterized for concentration and structure of grain ß-glucan in two environments. Results showed that concentrations of ß-glucan, DP3, DP4 and DP3 + DP4 were positively correlated with each other, suggesting no preference for DP3 or DP4 subunit production in high- or low-ß-glucan lines. The concentrations of ß-glucan, DP3, DP4 and DP3:DP4 ratios were significantly influenced by genotype and environment. However, only DP3:DP4 ratio showed a significant effect of G × E interaction. Association mapping of candidate markers in 119 barley genotypes showed that marker CSLF6_4105 was associated with ß-glucan concentration, whereas Bmac504 and Bmac211 were associated with DP3:DP4 ratio. Bmac273e was associated with both ß-glucan concentration and DP3:DP4 ratio. CONCLUSION: The grain ß-glucan concentration and DP3:DP4 ratio are strongly affected by genotype and environment. Single-marker analyses suggested that the genetic control of ß-glucan concentration and DP3:DP4 ratio was linked to separate chromosomal regions on barley genome. © 2016 Society of Chemical Industry.


Subject(s)
Dietary Carbohydrates/analysis , Gene-Environment Interaction , Glucosyltransferases/metabolism , Hordeum/chemistry , Plant Proteins/metabolism , Seeds/chemistry , beta-Glucans/analysis , Alberta , Altitude , Animal Feed/analysis , Animals , Carbohydrate Sequence , Cellulose/genetics , Cellulose/metabolism , Climate , Crosses, Genetic , Dietary Carbohydrates/metabolism , Genetic Markers , Glucosyltransferases/genetics , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Humans , Nutritive Value , Plant Breeding , Plant Proteins/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Substrate Specificity , Tetroses/metabolism , Trioses/metabolism , beta-Glucans/chemistry , beta-Glucans/metabolism
15.
Carbohydr Polym ; 158: 112-123, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28024534

ABSTRACT

Starch granule size, shape and structure of amylopectin are species specific and influence starch properties and end-use of starch. Amylopectin glucan chain structure was used to predict the starch botanical sources. Mathematical probability for accumulation of small glucan chains DP 6-10 reveal exponential fit curve with maximum R2 in smallest granule size starches (Chlamydomonas, quinoa, buckwheat). Cereal and cassava showed R2 of 0.81-0.96 while in pulses and tubers it was less than 0.7. The amylopectin small glucan chains form a unique 'finger print region' that identified starch botanical source. Differential amylopectin chain length distribution (APCLD) graphs between DP 6-80 of all species from Chlamydomonas starch distinguished five structural groups that clustered the 31 analyzed starches into four major patterns. APCLD analyses of amylopectin combined with characteristic pattern of small linear DP (6-9) glucan chains predicted the starch botanical source.


Subject(s)
Amylopectin/chemistry , Starch/classification , Amylose , Chenopodium quinoa , Chlamydomonas , Edible Grain , Glucans , Manihot , Plant Tubers
16.
Plant Physiol Biochem ; 108: 422-433, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27552180

ABSTRACT

Galactinol synthase (GS, EC 2.4.1.123) catalyzes the transfer of a galactosyl residue from UDP-galactose to myo-inositol to synthesize galactinol, a precursor for raffinose family oligosaccharides (RFO) biosynthesis. Screening, a cDNA library constructed with RNA isolated from developing lentil seeds, with partial GS genes resulted in identification of cDNA clones for two isoforms of GS, LcGolS1 (1336 bp, ORF-1002 bp, 334 amino acids) and LcGolS2 (1324bp, ORF-975bp, 325 amino acids) with predicted molecular weights of 38.7 kDa and 37.6 kDa, respectively. During lentil seed development, LcGolS1 transcripts showed higher accumulation during 26-32 days after flowering (DAF) corresponding to seed desiccation, while LcGolS2 showed maximum accumulation at 24 DAF, prior to increase in LcGolS1 transcripts. GS enzyme activity was maximum at 26 and 28 DAF and corresponded to galactinol accumulation, which also increased rapidly at 22 DAF with maximum accumulation at 26 DAF. Substrates for GS activity, myo-inositol and glucose/galactose were present in high concentrations during early stages of seed development but gradually decreased from 20 DAF to 32 DAF when galactinol concentration increased coinciding with increased GS enzyme activity.


Subject(s)
Galactosyltransferases/metabolism , Lens Plant/enzymology , Plant Proteins/metabolism , Seeds/enzymology , Seeds/growth & development , Cloning, Molecular , DNA, Complementary , Disaccharides/metabolism , Galactosyltransferases/chemistry , Galactosyltransferases/genetics , Gene Expression Regulation, Plant , Gene Library , Isoenzymes/genetics , Isoenzymes/metabolism , Lens Plant/genetics , Lens Plant/growth & development , Phylogeny , Plant Proteins/genetics , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Protein Conformation , Reference Standards , Reproducibility of Results , Seeds/genetics
17.
Phytochemistry ; 125: 88-98, 2016 May.
Article in English | MEDLINE | ID: mdl-26953100

ABSTRACT

To understand raffinose family oligosaccharides (RFO) metabolism in chickpea (Cicer arietinum L.) seeds, RFO accumulation and corresponding biosynthetic enzymes activities were determined during seed development of chickpea genotypes with contrasting RFO concentrations. RFO concentration in mature seeds was found as a facilitator rather than a regulating step of seed germination. In mature seeds, raffinose concentrations ranged from 0.38 to 0.68 and 0.75 to 0.99 g/100 g, whereas stachyose concentrations varied from 0.79 to 1.26 and 1.70 to 1.87 g/100 g indicating significant differences between low and high RFO genotypes, respectively. Chickpea genotypes with high RFO concentration accumulated higher concentrations of myo-inositol and sucrose during early seed developmental stages suggesting that initial substrate concentrations may influence RFO concentration in mature seeds. High RFO genotypes showed about two to three-fold higher activity for all RFO biosynthetic enzymes compared to those with low RFO concentrations. RFO biosynthetic enzymes activities correspond with accumulation of individual RFO during seed development.


Subject(s)
Cicer/growth & development , Galactosyltransferases/metabolism , Raffinose/metabolism , Cicer/genetics , Genotype , Oligosaccharides/metabolism , Seeds/metabolism , Sucrose/metabolism
18.
Carbohydr Polym ; 114: 87-94, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25263868

ABSTRACT

Wheat grain development is a complex process and is characterized by changes in physicochemical and structural properties of starch. The present study deals with endosperm starch physicochemical properties and structure during development in different granule-bound starch synthase I (GBSSI) null also known as waxy (Wx) genotypes. The study was conducted with pure starch isolated from wheat grains at 3-30 days post anthesis (DPA), at 3-day intervals. Amylose concentration increased throughout grain development in non-waxy (7.2-30.5%) and partial waxy genotypes (6.0-26.8%). Completely waxy genotype showed 7.0% amylose at 3 and 6 DPA, which declined during development and reached non-detectable quantities by 30 DPA. Amylopectin structure had a higher content of short chains at 3 DPA, which decreased continuously until 12 DPA, after which there were only minor changes in amylopectin chain length distribution. Similarly, the average degree of polymerization (DP) increased from 3 DPA (12.3) to 12 DPA (15.0), and then did not differ significantly up to 30 DPA (15.0). This suggests the formation of basic amylopectin architecture in wheat by 12 DPA. Wx-B and Wx-D affected amylopectin short chains mostly of DP 6-8 at 3 and 6 DPA. Wx-A affected the same fraction of chains at 9 and 12 DPA, and Wx-D affected DP 18-25 chains from 18 to 30 DPA, suggesting differential effect of waxy isoproteins on amylopectin structure formation.


Subject(s)
Edible Grain/genetics , Genome, Plant/genetics , Starch Synthase/genetics , Starch/genetics , Triticum/genetics , Edible Grain/growth & development , Starch/biosynthesis , Starch Synthase/biosynthesis , Triticum/growth & development
19.
J Agric Food Chem ; 62(10): 2289-96, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24483248

ABSTRACT

Microscope analysis of starches prepared from 139 barley genotypes identified a Japanese genotype, Kinai Kyoshinkai-2 (KK-2), with altered starch granule size distribution. Compared to normal barley starch, KK-2 produced consistently higher volumes of starch granules with 5-15 µm diameter and reduced volumes of starch granules with >15 µm diameter when grown in different environments. A cross between KK-2 and normal starch cultivar CDC Kendall was made and led to the production of 154 F5 lines with alterations to the normal 7:3:1 distribution for A-:B-:C-type starch granule volumes. Three F5 lines showed unimodal starch granule size distribution due to apparent lack of very small (<5.0 µm diameter) C-type starch granules, but the phenotype was accompanied by reduced grain weight and total starch concentration. Five F5 lines produced a significantly larger population of large (>15 µm diameter) A-type starch granules as compared to normal starch and showed on average a 10:4:1 distribution for A-:B-:C-type starch granule volumes. The unusual starch phenotypes displayed by the F5 lines confirm starch granule size distribution in barley can be genetically altered.


Subject(s)
Hordeum/cytology , Hordeum/genetics , Starch/chemistry , Starch/genetics , Genotype , Phenotype , Seeds/genetics , Starch/analysis
20.
Food Chem ; 154: 127-33, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24518324

ABSTRACT

A high performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised to separate with precision, accuracy and high reproducibility soluble sugars including oligosaccharides present in pulse meal samples. The optimised method within 20min separated myo-inositol, galactinol, glucose, fructose, sucrose, raffinose, stachyose and verbascose in chickpea seed meal extracts. Gradient method of eluting solvent (sodium hydroxide) resulted in higher sensitivity and rapid detection compared to similar analytical methods. Peaks asymmetry equivalent to one and resolution value ⩾1.5 support column's precision and accuracy for quantitative determinations of soluble sugars in complex mixtures. Intermediate precision determined as relative standard deviation (1.8-3.5%) for different soluble sugars confirms reproducibility of the optimised method. The developed method has superior sensitivity to detect even scarcely present verbascose in chickpea. It also quantifies myo-inositol and galactinol making it suitable both for RFO related genotype screening and biosynthetic studies.


Subject(s)
Carbohydrates/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange/methods , Cicer/chemistry , Plant Extracts/analysis , Raffinose/analysis , Seeds/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, Ion Exchange/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL