Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
J Exp Clin Cancer Res ; 42(1): 29, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36691089

ABSTRACT

BACKGROUND: The applicability and therapeutic efficacy of specific personalized immunotherapy for cancer patients is limited by the genetic diversity of the host or the tumor. Side-effects such as immune-related adverse events (IRAEs) derived from the administration of immunotherapy have also been observed. Therefore, regulatory immunotherapy is required for cancer patients and should be developed. METHODS: The cationic lipo-PEG-PEI complex (LPPC) can stably and irreplaceably adsorb various proteins on its surface without covalent linkage, and the bound proteins maintain their original functions. In this study, LPPC was developed as an immunoregulatory platform for personalized immunotherapy for tumors to address the barriers related to the heterogenetic characteristics of MHC molecules or tumor associated antigens (TAAs) in the patient population. Here, the immune-suppressive and highly metastatic melanoma, B16F10 cells were used to examine the effects of this platform. Adsorption of anti-CD3 antibodies, HLA-A2/peptide, or dendritic cells' membrane proteins (MP) could flexibly provide pan-T-cell responses, specific Th1 responses, or specific Th1 and Th2 responses, depending on the host needs. Furthermore, with regulatory antibodies, the immuno-LPPC complex properly mediated immune responses by adsorbing positive or negative antibodies, such as anti-CD28 or anti-CTLA4 antibodies. RESULTS: The results clearly showed that treatment with LPPC/MP/CD28 complexes activated specific Th1 and Th2 responses, including cytokine release, CTL and prevented T-cell apoptosis. Moreover, LPPC/MP/CD28 complexes could eliminate metastatic B16F10 melanoma cells in the lung more efficiently than LPPC/MP. Interestingly, the melanoma resistance of mice treated with LPPC/MP/CD28 complexes would be reversed to susceptible after administration with LPPC/MP/CTLA4 complexes. NGS data revealed that LPPC/MP/CD28 complexes could enhance the gene expression of cytokine and chemokine pathways to strengthen immune activation than LPPC/MP, and that LPPC/MP/CTLA4 could abolish the LPPC/MP complex-mediated gene expression back to un-treatment. CONCLUSIONS: Overall, we proved a convenient and flexible immunotherapy platform for developing personalized cancer therapy.


Subject(s)
Melanoma , Polymers , Animals , Mice , Cytokines/metabolism , Immunotherapy , Liposomes/chemistry
3.
Cancer Genomics Proteomics ; 12(5): 223-30, 2015.
Article in English | MEDLINE | ID: mdl-26417025

ABSTRACT

BACKGROUND: Circulating mRNA is a less invasive and more easily accessed source of samples for biomedical research and clinical applications. However, it is of poor quality. We explored and compared the ability of two high-throughput platforms for the profiling of circulating mRNA regarding their ability to retrieve useful information out of this type of samples. MATERIALS AND METHODS: Circulating mRNAs from three non-small cell lung cancer patients and three healthy controls were analyzed by the cDNA-mediated annealing, selection, extension, and ligation (DASL) assay and high-throughput RNA sequencing (RSEQ). Twelve genes were selected for further confirmation by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: The overall expression profiles derived from the two platforms showed modest-to-moderate correlation. Genes with higher expression levels had higher cross-platform concordance than those of medium- and low-expression levels. In addition, the pathway signatures identified by gene set enrichment analysis from both platforms were in agreement. The RT-q PCR results for the selected genes correlated well with that of RSEQ. CONCLUSION: Genes with higher expression levels have cross-platform concordance and can be potential biomarkers. Furthermore, RSEQ is a better tool for profiling circulating mRNAs.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Transcriptome , Carcinoma, Non-Small-Cell Lung/genetics , Case-Control Studies , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Lung Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/standards , RNA, Messenger/blood , Reproducibility of Results
4.
Anal Biochem ; 416(1): 1-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21609711

ABSTRACT

Triplex-forming oligonucleotides (TFOs) are sequence-dependent DNA binders that may be useful for DNA targeting and detection. A sensitive and convenient method to monitor triplex formation by a TFO and its target DNA duplex is required for the application of TFO probes. Here we describe a novel design by which triplex formation can be monitored homogeneously without prelabeling the target duplex. The design uses a TFO probe tagged with a fluorophore that undergoes fluorescence resonance energy transfer with fluorescent dyes that intercalate into the target duplex. Through color compensation analysis, the specific emission of the TFO probe reveals the status of the triple helices. We used this method to show that triple helix formation with TFOs is magnesium dependent. We also demonstrated that the TFO probe can be used for detection of sequence variation in melting analysis and for DNA quantitation in real-time polymerase chain reaction.


Subject(s)
DNA/analysis , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Oligonucleotides/chemistry , DNA/chemistry , DNA/genetics , Fluorescent Dyes/analysis , Fluorescent Dyes/chemical synthesis , Intercalating Agents/chemistry , Nucleic Acid Denaturation , Oligonucleotides/analysis , Oligonucleotides/chemical synthesis , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL