Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 923: 171466, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447718

ABSTRACT

A comprehensive chemical characterization of fine particulate matter (PM2.5) was conducted at an urban site in one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PM2.5 samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation in vivo as an initial step of health effects due to oxidative stress. The PM2.5 concentrations ranged from 8.3 to 148 µg m-3, with an annual average of 40.2 ± 26.3 µg m-3 (from September 2019 to December 2020). Our results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model showed the contribution of nine PM2.5 sources. The main anthropogenic sources contributing to the PM mass concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %) and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in Vietnam. The average OPv levels obtained in our study were 3.9 ± 2.4 and 4.5 ± 3.2 nmol min-1 m-3 for OPDTT and OPAA, respectively. We assessed the contribution to OPDTT and OPAA of each PM2.5 source by applying multilinear regression models. It shows that the sources associated with human activities (HFO combustion, biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-term chemical characterization of PM2.5, providing also a link between emission sources, ambient concentrations and exposure to air pollution at an urban site in Hanoi, Vietnam.

2.
Article in English | MEDLINE | ID: mdl-38226566

ABSTRACT

A mesophilic, anaerobic, endospore-forming, fermentative bacterium designated strain 8C15bT was isolated from bank sediment of the Bach Dang Estuary, Haiphong, Vietnam. The Bach Dang Estuary, where Haiphong harbour is located, is subject to strong anthropogenic influence, resulting in high concentrations of black carbon and heavy metals. Strain 8C15bT grew optimally at 30 °C, pH 7.5 and with 2.5 % (w/v) NaCl. The main cellular fatty acids consisted of iso-C15 : 0 (51 %), iso-C15:1 ω7c (32 %) and iso-C13 : 0 (5 %). Genomic considerations of strain 8C15bT and comparisons with the phylogenetically closest strains of the genus Tepidibacter provide evidence that Tepidibacter thalassicus SC562T (=DSM 15285T), Tepidibacter formicigenes DV1184T (=DSM 15518T), Tepidibacter mesophilus B1T (=JCM 16806T) and strain 8C15bT could be differentiated at the species level. We propose the name Tepidibacter aestuarii sp. nov. for the type strain 8C15bT (=JCM 35983T=KCTC 25692T). Finally, the nickel-tolerance properties of strain 8C15bT are highlighted in this study.


Subject(s)
Estuaries , Fatty Acids , Fatty Acids/chemistry , Vietnam , Sequence Analysis, DNA , Phylogeny , Base Composition , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Phospholipids/chemistry
4.
Mar Pollut Bull ; 194(Pt B): 115386, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37591021

ABSTRACT

Aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs, respectively) were analyzed in the dissolved fraction (<0.7 µm) of surface water and in various particulate/planktonic size fractions (0.7-60, 60-200, 200-500 and 500-1000 µm) collected at the deep chlorophyll maximum, along a North-South transect in the Mediterranean Sea in spring 2019 (MERITE-HIPPOCAMPE campaign). Suspended particulate matter, biomass, total chlorophyll a, particulate organic carbon, C and N isotopic ratios, and lipid biomarkers were also determined to help characterizing the size-fractionated plankton and highlight the potential link with the content in AHs and PAHs in these size fractions. Æ©28AH concentrations ranged 18-489 ng L-1 for water, 3.9-72 µg g-1 dry weight (dw) for the size fraction 0.7-60 µm, and 3.4-55 µg g-1 dw for the fractions 60-200, 200-500 and 500-1000 µm. AH molecular profiles revealed that they were mainly of biogenic origin. Æ©14PAH concentrations were 0.9-16 ng L-1 for water, and Æ©27PAH concentrations were 53-220 ng g-1 dw for the fraction 0.7-60 µm and 35-255 ng g-1 dw for the three higher fractions, phenanthrene being the most abundant compound in planktonic compartment. Two processes were evidenced concerning the PAH patterns, the bioreduction, i.e., the decrease in concentrations from the small size fractions (0.7-60 and 60-200 µm) to the higher ones (200-500 µm and 500-1000 µm), and the biodilution, i.e., the decrease in concentrations in plankton at higher suspended matter or biomass, especially for the 0.7-60 and 60-200-µm size fractions. We estimated the biological pump fluxes of Æ©27PAHs below 100-m depth in the Western Mediterranean Sea at 15 ± 10 ng m-2 day-1, which is comparable to those previously reported in the South Pacific and Indian Ocean.


Subject(s)
Hydrocarbons , Polycyclic Aromatic Hydrocarbons , Chlorophyll A , Dust , Mediterranean Sea , Plankton , Water
5.
Sci Total Environ ; 901: 165802, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37524184

ABSTRACT

Here we investigated the bioavailability of black carbon (BC)-derived dissolved organic matter (DOM) for a natural mixed community of marine heterotrophic prokaryotes. We ran an in vitro biodegradation experiment that took place over 3 months and exposed a community of organisms collected in the northwestern Mediterranean Sea (Bay of Marseille, France) to three different soluble fractions of BC prepared in the laboratory from various fossil fuel combustion particulates: standard diesel (DREF), oxidized diesel (DREF-OX), and natural samples of ship soot (DSHIP). Over the course of the three months, we observed significant decreases in the concentrations of dissolved organic carbon (DOC; from 9 to 21 %), dissolved BC (DBC; from 22 to 38 %) and dissolved polycyclic aromatic hydrocarbons (d-PAH; from 24 to 64 %) along with variability in the growth dynamics and activity of the heterotrophic prokaryotic community. The heterotrophic prokaryotic community exposed to DREF-OX treatment showed the highest values of respiration and production and the highest cell abundance, associated with the highest decrease in DOC (21 %) and d-PAH (64 %) concentrations. In the DREF and DSHIP treatments, prokaryotic activity was oriented towards anabolism. DREF treatment led to the highest decrease in DBC concentration (38 %). DSHIP treatment, which presented a substantially different d-PAH and dissolved metals content to the other two treatments, showed the lowest decreases in DOC, DBC and d-PAH concentrations, as well as the lowest prokaryotic activity and biomasses. Our results indicate that BC-derived DOM, including the most condensed fraction of this material, is partly bioavailable and therefore likely to be assimilated by marine prokaryotes. The origin of BC/soot deposited at the ocean surface turns out to be a key parameter that dictates the efficiency of biodegradation of its dissolved fraction by heterotrophic prokaryotes.


Subject(s)
Dissolved Organic Matter , Polycyclic Aromatic Hydrocarbons , Soot , Biological Availability , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
6.
Mar Pollut Bull ; 189: 114787, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36878021

ABSTRACT

Plankton represents the main source of carbon in marine ecosystems and is consequently an important gateway for contaminants into the marine food webs. During the MERITE- HIPPOCAMPE campaign in the Mediterranean Sea (April-May 2019), plankton was sampled from pumping and net tows at 10 stations from the French coast to the Gulf of Gabès (Tunisia) to obtain different size fractions in contrasted regions. This study combines various approaches, including biochemical analyses, analyses of stable isotope ratios (δ13C, δ15N), cytometry analyses and mixing models (MixSiar) on size-fractions of phyto- and zooplankton from 0.7 to >2000 µm. Pico- and nanoplankton represented a large energetic resource at the base of pelagic food webs. Proteins, lipids, and stable isotope ratios increased with size in zooplankton and were higher than in phytoplankton. Stable isotope ratios suggest different sources of carbon and nutrients at the base of the planktonic food webs depending on the coast and the offshore area. In addition, a link between productivity and trophic pathways was shown, with high trophic levels and low zooplankton biomass recorded in the offshore area. The results of our study highlight spatial variations of the trophic structure within the plankton size-fractions and will contribute to assess the role of the plankton as a biological pump of contaminants.


Subject(s)
Ecosystem , Plankton , Animals , Plankton/metabolism , Mediterranean Sea , Zooplankton/metabolism , Phytoplankton/metabolism , Food Chain , Isotopes , Carbon/metabolism
7.
Mar Pollut Bull ; 189: 114765, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36898272

ABSTRACT

This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.


Subject(s)
Food Chain , Plankton , Mediterranean Sea , Seasons , Oceanography
8.
Mar Pollut Bull ; 186: 114384, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455500

ABSTRACT

Particle-size classes (7 fractions from 0.8 to 2000 µm) were collected in the deep chlorophyll maximum along a Mediterranean transect including the northern coastal zone (bays of Toulon and Marseilles, France), the offshore zone (near the North Balearic Thermal Front), and the southern coastal zone (Gulf of Gabès, Tunisia). Concentrations of biotic metals and metalloids (As, Cd, Cr, Cu, Fe, Mn, Ni, Sb, V, Zn) bound to living or dead organisms and faecal pellets were assessed by phosphorus normalisation. Biotic metals and metalloids concentrations (except Cr, Mn, and V) were higher in the offshore zone than in the coastal zones. In addition, biotic Sb and V concentrations appeared to be affected by atmospheric deposition, and biotic Cr concentrations appeared to be affected by local anthropogenic inputs. Essential elements (Cd, Cu, Fe, Mn, Ni, V, Zn) were very likely controlled both by the metabolic activity of certain organisms (nanoeukaryotes, copepods) and trophic structure. In the northern coastal zone, biomagnification of essential elements was controlled by copepods activities. In the offshore zone, metals and metalloids were not biomagnified probably due to homeostasis regulatory processes in organisms. In the southern coastal zone, biomagnification of As, Cu, Cr, Sb could probably induce specific effects within the planktonic network.


Subject(s)
Metalloids , Metals, Heavy , Water Pollutants, Chemical , Food Chain , Metalloids/analysis , Mediterranean Sea , Cadmium , Environmental Monitoring , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Metals/analysis , Metals, Heavy/analysis
9.
Mar Pollut Bull ; 185(Pt A): 114315, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36368082

ABSTRACT

This study uses Cu and Zn isotopic compositions as proxies of sources and metal transfers in the planktonic food webs from the Mediterranean Sea. Plankton was collected in spring 2019 in the deep chlorophyll maximum (DCM) along a North-South transect including coastal and offshore zones (MERITE-HIPPOCAMPE campaign). δ65Cu and δ66Zn were determined on four planktonic size fractions from 60 to 2000 µm. Combined δ65Cu and δ66Zn with geochemical tracers (Ti, particulate organic phosphorus) showed that geogenic particles were ubiquitous with plankton assemblages. The δ15N ecological tracer showed that planktonic food web was enriched in heavy isotopes of Cu and Zn in the higher trophic levels. δ65Cu were correlated with picoplankton in the offshore zone, and with zooplankton in the southern coastal zone. Firmicutes bacteria were found correlated with δ66Zn in northern and southern coastal zones suggesting decomposition of particulate matter at the DCM. These findings suggest that biogeochemical process may impact Cu and Zn isotopy in the planktonic community.


Subject(s)
Copper , Zinc , Zinc/analysis , Copper/analysis , Plankton , Environmental Monitoring , Mediterranean Sea , Food Chain
10.
Microbiol Resour Announc ; 11(7): e0013222, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35758722

ABSTRACT

We report the complete genome sequence of Tepidibacter sp. strain 8C15b, isolated from bank sediments of Haiphong Bay, Vietnam. The genome includes a 3,628,320-bp circular chromosome and a plasmid of 38,213 bp.

11.
MethodsX ; 6: 1133-1146, 2019.
Article in English | MEDLINE | ID: mdl-31193445

ABSTRACT

Sterilization is essential for discriminating biotic responses from abiotic reactions in laboratory experiments investigating biogeochemical processes of complex natural samples. However, the conventional methods used to effectively sterilize materials or culture media do not allow sterilizing complex natural samples while maintaining biogeochemical balances. The aim of this study was to develop a low-cost and easy-to-use method to obtain geochemically unmodified and sterilized samples from complex lacustrine or coastal marine ecosystems. In preliminary assays, the impact of several sterilization methods (autoclaving, chemical poisoning, microwave, UV irradiation) on the trace metals balances was studied using borosilicate glass (BG), fluorinated ethylene-propylene (FEP) or polyethylene terephthalate (PET) bottles. Unlike other methods, UV sterilization had minor effects on the distribution of dissolved trace metals. Additional tests using complex lacustrine and coastal marine samples under 10 g/L sediments were performed using a homemade UV sterilization chamber designed to simultaneously irradiate a large number samples. Results showed: •very reproducible UV tests in BG and FEP bottles•faster sterilization using FEP bottles than using BG bottles•low variations of dissolved trace metals concentrations, except for Al, Cu, Fe and Zn.

12.
Environ Sci Pollut Res Int ; 25(26): 26653-26668, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30003484

ABSTRACT

Southeast Asia is a hotspot of anthropogenic emissions where episodes of recurrent and prolonged atmospheric pollution can lead to the formation of large haze events, giving rise to wide plumes which spread over adjacent oceans and neighbouring countries. Trace metal concentrations and Pb isotopic ratios in atmospheric particulate matter < 10 µm (PM10) were used to track the origins and the transport pathways of atmospheric pollutants. This approach was used for fortnightly PM10 collections over a complete annual cycle in Haiphong, northern Vietnam. Distinct seasonal patterns were observed for the trace metal concentration in PM10, with a maximum during the Northeast (NE) monsoon and a minimum during the Southeast (SE) monsoon. Some elements (As, Cd, Mn) were found in excess according to the World Health Organization guidelines. Coal combustion was highlighted with enrichment factors of As, Cd, Se, and Sb, but these inputs were outdistanced by other anthropogenic activities. V/Ni and Cu/Sb ratios were found to be markers of oil combustion, while Pb/Cd and Zn/Pb ratios were found to be markers of industrial activities. Pb isotopic composition in PM10 revealed an important contribution of soil dusts (45-60%). In PM10, the Pb fraction due to oil combustion was correlated with dominant airflow pathways (31% during the north-easterlies and 20% during the south-easterlies), and the Pb fraction resulting from industrial emissions was stable (around 28%) throughout the year. During the SE monsoon, Pb inputs were mainly attributed to resuspension of local soil dusts (about 90%), and during the NE monsoon, the increase of Pb inPM10 was due to the mixing of local and regional inputs.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Lead/administration & dosage , Metalloids/analysis , Metals, Heavy/analysis , Particulate Matter/analysis , Atmosphere/chemistry , Industry , Isotopes/analysis , Oceans and Seas , Particle Size , Vietnam
13.
Front Microbiol ; 9: 3103, 2018.
Article in English | MEDLINE | ID: mdl-30619182

ABSTRACT

Both industrial effluent discharge and the resuspension of contaminated marine sediments are important sources of trace metals in seawater which potentially affect marine ecosystems. The aim of this study was to evaluate the impact of the industrial wastewaters having acidic pH (2-3) and containing trace metals on microbial diversity in the coastal ecosystem of the Gulf of Gabès (Tunisia, southern Mediterranean Sea) subjected to resuspension events of marine sediments. Four trace elements (As, Cd, U, and V) were monitored during 10-day sediment resuspension experiments. The highest enrichment in the seawater dissolved phase was observed for Cd followed by U, V, and As. Cd remobilization was improved by indigenous microbial community, while U release was mainly abiotic. Acidic effluent addition impacted both trace metal distribution and microbial diversity, particularly that of the abundant phylum Bacteroidetes. Members of the order Saprospirales were enriched from sediment in natural seawater (initial pH > 8), while the family Flavobacteriaceae was favored by acidified seawater (initial pH < 8). Some Flavobacteriaceae members were identified as dominant species in both initial sediment and experiments with acidic wastewater, in which their relative abundance increased with increasing dissolved Cd levels. It could be therefore possible to consider them as bioindicators of metal pollution and/or acidification in marine ecosystems.

14.
Front Microbiol ; 8: 1583, 2017.
Article in English | MEDLINE | ID: mdl-28871244

ABSTRACT

Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate) and sulfate sources (i.e., sodium sulfate or PG) as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia). Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures) was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

15.
Mar Pollut Bull ; 54(11): 1697-706, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17804021

ABSTRACT

Parasite species have been widely used as fish host migration tag or as indicators of local pollution. In this paper our approach is to consider the entire parasite community as a biological indicator of the fish environmental conditions. Seven fish species belonging to the Apogonidae, Apogon bandanensis, A. cookii, A. doderleini, A. norfolkensis, A. trimaculatus, Cheilodipterus quinquelineatus and Fowleria variegata, were sampled on six stations in two bays (Grand-Rade and Sainte-Marie) around Nouméa (New-Caledonia). The two bays are submitted to urban wastewater inputs alone or combined with additional industrial inputs which influences decrease from the inner part to the entrance of each bay. A total of 592 fish were dissected for macro parasite examination. Parasites were grouped according to their taxonomical rank and development stage for the analysis. We found an inconsistent effect of the confinement between the two bays, revealing that the parasite community is not the same in the two bays. Moreover, the encysted metacercariae found in the pericardic cavity were found to be significant indicators of the specific anthropogenically impacted environmental conditions prevailing in the inner parts of the two bays. Other parasite taxa were found to be significant indicators of specific environmental conditions in one or two stations among the six sampled. Results on parasite specificity and biological life cycle of the parasite taxa found in sampled Apogonid were further compared with environmental parameters.


Subject(s)
Anthozoa , Ecosystem , Environmental Monitoring/methods , Fish Diseases/parasitology , Perciformes/parasitology , Seawater , Water Pollutants, Chemical/analysis , Animals , Epidemiological Monitoring , Fish Diseases/epidemiology , Fish Diseases/pathology , Fishes , Geography , Industrial Waste , Models, Biological , New Caledonia/epidemiology , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...