Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37242621

ABSTRACT

The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.

2.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201323

ABSTRACT

Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) and its ligand PD-L1 have proven to be efficient cancer therapies in a subset of patients. From all the patients with various cancer types, only 20% have a positive response. Being able to distinguish patients that do express PD-1/PD-L1 from patients that do not allows patients to benefit from a more personalized and efficient treatment of tumor lesion(s). Expression of PD-1 and PD-L1 is typically assessed via immunohistochemical detection in a tumor biopsy. However, this method does not take in account the expression heterogeneity within the lesion, nor the possible metastasis. To visualize whole-body PD-L1 expression by PET imaging, we developed a nanobody-based radio-immunotracer targeting PD-L1 site-specifically labeled with gallium-68. The cysteine-tagged nanobody was site-specifically conjugated with a maleimide (mal)-NOTA chelator and radiolabeling was tested at different nanobody concentrations and temperatures. Affinity and specificity of the tracer, referred to as [68Ga]Ga-NOTA-mal-hPD-L1 Nb, were assayed by surface plasmon resonance and on PD-L1POS or PD-L1NEG 624-MEL cells. Xenografted athymic nude mice bearing 624-MEL PD-L1POS or PD-L1NEG tumors were injected with the tracer and ex vivo biodistribution was performed 1 h 20 min post-injection. Ideal 68Ga-labeling conditions were found at 50 °C for 15 min. [68Ga]Ga-NOTA-mal-hPD-L1 Nb was obtained in 80 ± 5% DC-RCY with a RCP > 99%, and was stable in injection buffer and human serum up to 3 h (>99% RCP). The in vitro characterization showed that the NOTA-functionalized Nb retained its affinity and specificity. Ex vivo biodistribution revealed a tracer uptake of 1.86 ± 0.67% IA/g in the positive tumors compared with 0.42 ± 0.04% IA/g in the negative tumors. Low background uptake was measured in the other organs and tissues, except for the kidneys and bladder, due to the expected excretion route of Nbs. The data obtained show that the site-specific 68Ga-labeled NOTA-mal-hPD-L1 Nb is a promising PET radio-immunotracer due to its ease of production, stability and specificity for PD-L1.

3.
Curr Opin Chem Biol ; 63: 219-228, 2021 08.
Article in English | MEDLINE | ID: mdl-34325089

ABSTRACT

The field of nuclear imaging and therapy is rapidly progressing with the development of targeted radiopharmaceuticals that show rapid targeting and rapid clearance with minimal background. Unfortunately, they are often reabsorbed in the kidneys, leading to possible nephrotoxicity, limiting the therapeutic dose, and/or reducing imaging quality. The blocking of endocytic receptors has been extensively used as a strategy to reduce kidney radiation. Alternatively, the physicochemical properties of radiotracers can be modulated to either prevent their reuptake or promote the excretion of radiometabolites. Other interesting strategies focus on the insertion of a cleavable linker between the radiolabel and the targeting moiety or pretargeting approaches in which the targeting moiety and radiolabel are administered separately. In the context of this review, we will discuss the latest advances and insights on strategies used to reduce renal retention of low- to moderate-molecular-weight radiopharmaceuticals.


Subject(s)
Contrast Media/adverse effects , Contrast Media/pharmacokinetics , Radioisotopes/chemistry , Radiopharmaceuticals/adverse effects , Radiopharmaceuticals/pharmacokinetics , Single Photon Emission Computed Tomography Computed Tomography/methods , Albumins/chemistry , Animals , Contrast Media/administration & dosage , Dose-Response Relationship, Radiation , Humans , Kidney , Molecular Weight , Radiopharmaceuticals/administration & dosage , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...