Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38400113

ABSTRACT

The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.

2.
Vaccines (Basel) ; 12(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38250868

ABSTRACT

SARS-CoV-2 has a relatively high mutation rate, with the frequent emergence of new variants of concern (VOCs). Each subsequent variant is more difficult to neutralize by the sera of vaccinated individuals and convalescents. Some decrease in neutralizing activity against new SARS-CoV-2 variants has also been observed in patients vaccinated with Gam-COVID-Vac. In the present study, we analyzed the interplay between the history of a patient's repeated exposure to SARS-CoV-2 antigens and the breadth of neutralization activity. Our study includes four cohorts of patients: Gam-COVID-Vac booster vaccinated individuals (revaccinated, RV), twice-infected unvaccinated individuals (reinfected, RI), breakthrough infected (BI), and vaccinated convalescents (VC). We assessed S-protein-specific antibody levels and the ability of sera to neutralize lentiviral particles pseudotyped with Spike protein from the original Wuhan variant, as well as the Omicron variants BA.1 and BA.4/5. Individuals with hybrid immunity (BI and VC cohorts) exhibited significantly higher levels of virus-binding IgG and enhanced breadth of virus-neutralizing activity compared to individuals from either the revaccination or reinfection (RV and RI) cohorts. These findings suggest that a combination of infection and vaccination, regardless of the sequence, results in significantly higher levels of S-protein-specific IgG antibodies and the enhanced neutralization of SARS-CoV-2 variants, thereby underscoring the importance of hybrid immunity in the context of emerging viral variants.

3.
Front Immunol ; 13: 840707, 2022.
Article in English | MEDLINE | ID: mdl-35280987

ABSTRACT

The development of effective vaccines against SARS-CoV-2 remains a global health priority. Despite extensive use, the effects of Sputnik V on B cell immunity need to be explored in detail. We performed comprehensive profiling of humoral and B cell responses in a cohort of vaccinated subjects (n = 22), and demonstrate that Sputnik vaccination results in robust B cell immunity. We show that B memory cell (MBC) and antibody responses to Sputnik V were heavily dependent on whether the vaccinee had a history of SARS-CoV-2 infection or not. 85 days after the first dose of the vaccine, ex vivo stimulated MBCs from the vast majority of Sputnik V vaccinees produced antibodies that robustly neutralized the Wuhan Spike-pseudotyped lentivirus. MBC-derived antibodies from all previously infected and some of the naïve vaccine recipients could also cross-neutralize Beta (B.1.351) variant of SARS-CoV-2. Virus-neutralizing activity of MBC-derived antibodies correlated well with that of the serum antibodies, suggesting the interplay between the MBC and long-lived plasma cell responses. Thus, our in-depth analysis of MBC responses in Sputnik V vaccinees complements traditional serological approaches and may provide important outlook into future B cell responses upon re-encounter with the emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Memory B Cells/immunology , SARS-CoV-2/physiology , Vaccines, Synthetic/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cells, Cultured , Cohort Studies , Female , Humans , Immunization , Male , Middle Aged , Vaccination
4.
Vaccines (Basel) ; 10(1)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35062757

ABSTRACT

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.

5.
Cell Discov ; 7(1): 96, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34667147

ABSTRACT

In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.

6.
Vaccines (Basel) ; 9(5)2021 May 03.
Article in English | MEDLINE | ID: mdl-34063689

ABSTRACT

Nucleic acid-based influenza vaccines are a promising platform that have recently and rapidly developed. We previously demonstrated the immunogenicity of DNA vaccines encoding artificial immunogens AgH1, AgH3, and AgM2, which contained conserved fragments of the hemagglutinin stem of two subtypes of influenza A-H1N1 and H3N2-and conserved protein M2. Thus, the aim of this study was to design and characterize modified mRNA obtained using the above plasmid DNA vaccines as a template. To select the most promising protocol for creating highly immunogenic mRNA vaccines, we performed a comparative analysis of mRNA modifications aimed at increasing its translational activity and decreasing toxicity. We used mRNA encoding a green fluorescent protein (GFP) as a model. Eight mRNA-GFP variants with different modifications (M0-M7) were obtained using the classic cap(1), its chemical analog ARCA (anti-reverse cap analog), pseudouridine (Ψ), N6-methyladenosine (m6A), and 5-methylcytosine (m5C) in different ratios. Modifications M2, M6, and M7, which provided the most intensive fluorescence of transfected HEK293FT cells were used for template synthesis when mRNA encoded influenza immunogens AgH1, AgH3, and AgM2. Virus specific antibodies were registered in groups of animals immunized with a mix of mRNAs encoding AgH1, AgH3, and AgM2, which contained either ARCA (with inclusions of 100% Ψ and 20% m6A (M6)) or a classic cap(1) (with 100% substitution of U with Ψ (M7)). M6 modification was the least toxic when compared with other mRNA variants. M6 and M7 RNA modifications can therefore be considered as promising protocols for designing mRNA vaccines.

7.
Vaccines (Basel) ; 7(3)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390770

ABSTRACT

The construction of artificial proteins using conservative B-cell and T-cell epitopes is believed to be a promising approach for a vaccine design against diverse viral infections. This article describes the development of an artificial HIV-1 immunogen using a polyepitope immunogen design strategy. We developed a recombinant protein, referred to as nTBI, that contains epitopes recognized by broadly neutralizing HIV-1 antibodies (bNAbs) combined with Th-epitopes. This is a modified version of a previously designed artificial protein, TBI (T- and B-cell epitopes containing Immunogen), carrying four T- and five B-cell epitopes from HIV-1 Env and Gag proteins. To engineer the nTBI molecule, three B-cell epitopes of the TBI protein were replaced with the epitopes recognized by broadly neutralizing HIV-1 antibodies 10E8, 2F5, and a linear peptide mimic of VRC01 epitope. We showed that immunization of rabbits with the nTBI protein elicited antibodies that recognize HIV-1 proteins and were able to neutralize Env-pseudotyped SF162.LS HIV-1 strain (tier 1). Competition assay revealed that immunization of rabbits with nTBI induced mainly 10E8-like antibodies. Our findings support the use of nTBI protein as an immunogen with predefined favorable antigenic properties.

8.
BMC Med Genomics ; 12(Suppl 2): 44, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30871576

ABSTRACT

BACKGROUND: Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. METHODS: Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. RESULTS: In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in "resting" non-activated cells. CONCLUSIONS: Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences.


Subject(s)
Genes, Reporter , Killer Cells, Natural/metabolism , T-Lymphocytes/metabolism , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , Cell Line , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Killer Cells, Natural/cytology , Lectins, C-Type/genetics , Lentivirus/genetics , NF-kappa B/genetics , NFATC Transcription Factors/genetics , Promoter Regions, Genetic , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/cytology
9.
Oncotarget ; 9(10): 9021-9029, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29507671

ABSTRACT

T and NK cells armed with chimeric antigen receptors (CAR) are promising tools for the specific elimination of cancer cells. In most CAR designs implemented to date, the recognition of target cells is mediated by single-chain variable fragments (scFvs) derived from murine monoclonal antibodies. This format, however, has a number of limitations, including its relatively large size and potential immunogenicity in humans. In this study, we explored the feasibility of using human fibronectin type III domains (Fn3) as the antigen recognition domain in CARs. Human Fn3 domains have lower predicted immunogenicity compared to mouse-derived sequences, and a reduced molecular weight compared to scFvs. We created a functional CAR using a VEGFR2-specific Fn3 module replacing the conventional scFv. The resulting FnCAR specifically potentiates the cytotoxic activity of human T cells and YT NK cells in the presence of VEGFR2-positive targets. These findings demonstrate that Fn3 domains can be used in CARs for antigen recognition.

10.
PLoS One ; 10(3): e0120847, 2015.
Article in English | MEDLINE | ID: mdl-25785734

ABSTRACT

The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/chemistry , Epitopes/immunology , HIV-1/immunology , Peptidomimetics/immunology , Amino Acid Sequence , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , Molecular Docking Simulation , Peptide Library , Peptidomimetics/chemistry , Peptidomimetics/metabolism , Protein Conformation , Sequence Alignment
11.
Mol Immunol ; 50(4): 193-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22341130

ABSTRACT

A major goal in HIV-1 vaccine research is to develop an immunogen that can elicit broadly neutralizing antibodies that efficiently neutralize a wide range of the HIV-1 subtypes. Using biopanning procedure we have selected linear peptide VGAFGSFYRLSVLQS mimicking the structure of discontinuous binding sites of broadly neutralizing antibodies 2G12 from phage peptide library. As a protein carrier, we used the earlier designed artificial polyepitope immunogen named TBI (T- and B-cell immunogen), which comprises B-cell and T-helper epitopes from the HIV-1 Env and Gag proteins. On the base of selected peptide mimotope VGAFGSFYRLSVLQS the artificial protein TBI-2g12 was constructed and its immunogenic properties was investigated. It was shown that the TBI-2g12 as well as the original TBI induces antibodies that recognize HIV-1 proteins and TBI protein using ELISA and immunoblotting. However only anti-TBI-2g12 serum recognized the synthetic peptide mimotope VGAFGSFYRLSVLQS, whereas the antibodies against original TBI don't recognize it. The neutralization assay demonstrated that serum antibodies of the mice immunized with TBI-2g12 possess virus neutralizing activity. The addition of selected peptide leads to inhibition neutralizing activity of anti- TBI-2g12 serum. We conclude from these results that immunogen TBI-2g12 containing the selected peptide VGAFGSFYRLSVLQS elicits HIV-1 neutralizing antibodies during immunization. Our data suggest that this immunogen may be useful in designing effective HIV-vaccine candidates.


Subject(s)
AIDS Vaccines/chemical synthesis , AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Blotting, Western , Broadly Neutralizing Antibodies , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HIV Antibodies/chemistry , HIV Envelope Protein gp120/chemistry , HIV-1/immunology , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptide Library , Peptides/chemistry , Peptides/immunology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...