Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 358: 141761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531499

ABSTRACT

Low-level radioactive wastes were disposed at the Little Forest Legacy Site (LFLS) near Sydney, Australia between 1960 and 1968. According to the disposal records, 233U contributes a significant portion of the inventory of actinide activity buried in the LFLS trenches. Although the presence of 233U in environmental samples from LFLS has been previously inferred from alpha-spectrometry measurements, it has been difficult to quantify because the 233U and 234U α-peaks are superimposed. Therefore, the amounts of 233U in groundwaters, soils and vegetation from the vicinity of the LFLS were measured using accelerator mass spectrometry (AMS). The AMS results show the presence of 233U in numerous environmental samples, particularly those obtained within, and in the immediate vicinity of, the trenched area. There is evidence for dispersion of 233U in groundwater (possibly mobilised by co-disposed organic liquids), and the data also suggest other sources of 233U contamination in addition to the trench wastes. These may include leakages and spills from waste drums as well as waste burnings, which also occurred at the site. The AMS results confirm the historic information regarding disposal of 233U in the LFLS trenches. The AMS technique has been valuable to ascertain the distribution and environmental behaviour of 233U at the LFLS and the results demonstrate the applicability of AMS for evaluating contamination of 233U at other radioactive waste sites.


Subject(s)
Groundwater , Mass Spectrometry , Radiation Monitoring , Radioactive Waste , Soil Pollutants, Radioactive , Soil , Uranium , Water Pollutants, Radioactive , Radioactive Waste/analysis , Groundwater/chemistry , Groundwater/analysis , Radiation Monitoring/methods , Uranium/analysis , Water Pollutants, Radioactive/analysis , Soil/chemistry , Soil Pollutants, Radioactive/analysis , Australia , Plants/chemistry
3.
J Environ Radioact ; 237: 106679, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34118615

ABSTRACT

This study presents the first measurements of anthropogenic plutonium (239Pu and 240Pu) concentrations and atom ratios (240Pu/239Pu) for Tasmania, in sediment collected from Bathurst Harbour, in the Tasmanian Wilderness World Heritage Area, Australia. The weighted mean 240Pu/239Pu atom ratio measured at this site was 0.172 ± 0.007 which is consistent with published data from mainland Australia and global and Southern Hemisphere averages. The 240Pu/239Pu atom ratios ranged between 0.11 and 0.21 with the earliest recorded 240Pu/239Pu atom ratios being the lowest, suggesting an influence of low atom ratio fallout from nuclear testing in Australia. Post-moratorium fallout 240Pu/239Pu atom ratios were consistent with other records. Lead-210 (210Pb) sediment chronologies indicate sediment accumulation rates have increased since the early part of the 19th century at this location.


Subject(s)
Plutonium , Radiation Monitoring , Radioactive Fallout , Australia , Plutonium/analysis , Radioactive Fallout/analysis , Tasmania
4.
Mar Pollut Bull ; 158: 111390, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32753176

ABSTRACT

Radionuclides from 1950s weapons testing at the Montebello Islands, Western Australia, may impact sea turtle embryos incubating within eggs laid in contaminated sands or be taken up into adult body tissues where they can contribute to radiation dose over a turtles' 60+ year lifespan. We measured plutonium in all local samples including turtle skin, bones, hatchlings, eggshells, sea sediments, diet items and beach sands. The amount of Pu in developing embryos/hatchling samples was orders of magnitude lower than that in the surrounding sands. These contaminated sands caused most dose to eggs (external dose from 137Cs, 152Eu), while most of the dose to adults was from internalised radionuclides (98%). While current dose rates are relatively low, local dose rates were high for about ten years following the 1950s detonations and may have resulted in lethality or health impacts to a generation of turtles that likely carry biomarkers today.


Subject(s)
Plutonium/analysis , Turtles , Water Pollutants, Radioactive/analysis , Animals , Geologic Sediments , Islands , Western Australia
5.
J Environ Radioact ; 186: 101-115, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28941957

ABSTRACT

A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent Kd. Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position paper summarizes new knowledge on key sources that have contributed to particle releases, including particle characteristics based on advanced techniques, with emphasis on particle weathering processes as well as on heterogeneities in biological samples to evaluate potential uptake and retention of radioactive particles.


Subject(s)
Radiation Monitoring , Radioactive Pollutants/analysis , Radioactive Waste/analysis , Radioisotopes/analysis
6.
J Environ Radioact ; 151 Pt 3: 537-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26359847

ABSTRACT

The uranium isotope (233)U is not usually observed in alpha spectra from environmental samples due to its low natural and fallout abundance. It may be present in samples from sites in the vicinity of nuclear operations such as reactors or fuel reprocessing facilities, radioactive waste disposal sites or sites affected by clandestine nuclear operations. On an alpha spectrum, the two most abundant alpha emissions of (233)U (4.784 MeV, 13.2%; and 4.824 MeV, 84.3%) will overlap with the (234)U doublet peak (4.722 MeV, 28.4%; and 4.775 MeV, 71.4%), if present, resulting in a combined (233+234)U multiplet. A technique for quantifying both (233)U and (234)U from alpha spectra was investigated. A series of groundwater samples were measured both by accelerator mass spectrometry (AMS) to determine (233)U/(234)U atom and activity ratios and by alpha spectrometry in order to establish a reliable (233)U estimation technique using alpha spectra. The Genie™ 2000 Alpha Analysis and Interactive Peak Fitting (IPF) software packages were used and it was found that IPF with identification of three peaks ((234)U minor, combined (234)U major and (233)U minor, and (233)U major) followed by interference correction on the combined peak and a weighted average activity calculation gave satisfactory agreement with the AMS data across the (233)U/(234)U activity ratio range (0.1-20) and (233)U activity range (2-300 mBq) investigated. Correlation between the AMS (233)U and alpha spectrometry (233)U was r(2) = 0.996 (n = 10).


Subject(s)
Groundwater/analysis , Radiation Monitoring/methods , Uranium/analysis , Water Pollutants, Radioactive/analysis , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...