Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Environ Toxicol Chem ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042019

ABSTRACT

Legacy brominated flame retardants, including polybrominated diphenyl ethers (PBDEs), have been classified as persistent organic pollutants and replaced with novel brominated flame retardants (NBFRs). The octanol-water partition coefficients (log KOW) of NBFRs have been computationally estimated, but the log KOW values provided by these methods can differ by 1 to 3 orders of magnitude. Given the importance of this parameter in fate and toxicity models, we indirectly measured the log KOW values of eight NBFRs by their capacity factor (k') on a reversed-phase high-performance liquid chromatography (HPLC) C18 column by isocratic elution and compared these measured values with those estimated by nine computational models. Log KOW values were obtained for the NBFRs 1,2-bis(2,4,6-tribromophenoxy) ethane, pentabromobenzene, pentabromoethylbenzene, pentabromotoluene, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, allyl 2,4,6-tribromophenylether, 2,3-dibromopropyl-2,4,6-tribromophenyl ether, and bis(2-ethylhexyl) tetrabromophthalate. A training set of phthalates, polychlorinated biphenyls, PBDEs, and halogenated benzenes were chosen to obtain the log k'-log KOW calibration for the NBFRs. The computational models KowWIN, XLogP3, EAS-E Suite, COSMOtherm, DirectML, and Abraham polyparameter linear free energy relationships all predicted the log KOW values of the calibration compounds to within 1 order of magnitude without significant bias. The median of these models predicted log KOW values for the calibration compounds that were close to those known in the literature with root mean square error (RMSE) = 0.224 and for the NBFRs that were close to those measured by HPLC (RMSE = 0.334). Environ Toxicol Chem 2024;00:1-10. © 2024 SETAC.

2.
Water Res ; 242: 120154, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37327545

ABSTRACT

The insecticide and current use pesticide chlorpyrifos (CLP) is transported via global distillation to the Arctic where it may pose a threat to this ecosystem. CLP is readily detected in Arctic environmental compartments, but current research has not studied its partitioning between water and dissolved organic matter (DOM) nor the role of photochemistry in CLP's fate in aquatic systems. Here, the partition coefficients of CLP were quantified with various types of DOM isolated from the Arctic and an International Humic Substances Society (IHSS) reference material Suwannee River natural organic matter (SRNOM). While CLP readily partitions to DOM, CLP exhibits a significantly higher binding constant with Arctic lacustrine DOM relative to fluvial DOM or SRNOM. The experimental partitioning coefficients (KDOC) were compared to a calculated value estimated using poly parameter linear free energy relationship (pp-LFER) and was found to be in good agreement with SRNOM, but none of the Arctic DOMs. We found that Arctic KDOC values decrease with increasing SUVA254, but no correlations were observed for the other DOM compositional parameters. DOM also mediates the photodegradation of CLP, with stark differences in photo-kinetics using Arctic DOM isolated over time and space. This work highlights the chemo-diversity of Arctic DOM relative to IHSS reference materials and highlights the need for in-depth characterization of DOM that transcends the current paradigm based upon terrestrial and microbial precursors.


Subject(s)
Chlorpyrifos , Dissolved Organic Matter , Ecosystem , Humic Substances/analysis , Water/chemistry
3.
Environ Sci Technol ; 56(12): 9123-9132, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35675652

ABSTRACT

Fe(II) has been extensively studied due to its importance as a reductant in biogeochemical processes and contaminant attenuation. Previous studies have shown that ligands can alter aqueous Fe(II) redox reactivity but their data interpretation is constrained by the use of probe compounds. Here, we employed mediated electrochemical oxidation (MEO) as an approach to directly quantify the extent of Fe(II) oxidation in the absence and presence of three model organic ligands (citrate, nitrilotriacetic acid, and ferrozine) across a range of potentials (EH) and pH, thereby manipulating oxidation over a broad range of fixed thermodynamic conditions. Fe(III)-stabilizing ligands enhanced Fe(II) reactivity in thermodynamically unfavorable regions (i.e., low pH and EH) while an Fe(II) stabilizing ligand (ferrozine) prevented oxidation across all thermodynamic regions. We experimentally derived apparent standard redox potentials, EHϕ, for these and other (oxalate, oxalate2, NTA2, EDTA, and OH2) Fe-ligand redox couples via oxidative current integration. Preferential stabilization of Fe(III) over Fe(II) decreased EHϕ values, and a Nernstian correlation between EHϕ and log(KFe(III)/KFe(II)) exists across a wide range of potentials and stability constants. We used this correlation to estimate log(KFe(III)/KFe(II)) for a natural organic matter isolate, demonstrating that MEO can be used to measure iron stability constant ratios for unknown ligands.


Subject(s)
Ferric Compounds , Ferrous Compounds , Ferrous Compounds/chemistry , Ferrozine , Ligands , Oxalates , Oxidation-Reduction
4.
Environ Sci Process Impacts ; 24(3): 426-438, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35170586

ABSTRACT

Redox active species in Arctic lacustrine sediments play an important, regulatory role in the carbon cycle, yet there is little information on their spatial distribution, abundance, and oxidation states. Here, we use voltammetric microelectrodes to quantify the in situ concentrations of redox-active species at high vertical resolution (mm to cm) in the benthic porewaters of an oligotrophic Arctic lake (Toolik Lake, AK, USA). Mn(II), Fe(II), O2, and Fe(III)-organic complexes were detected as the major redox-active species in these porewaters, indicating both Fe(II) oxidation and reductive dissolution of Fe(III) and Mn(IV) minerals. We observed significant spatial heterogeneity in their abundance and distribution as a function of both location within the lake and depth. Microbiological analyses and solid phase Fe(III) measurements were performed in one of the Toolik Lake cores to determine the relationship between biogeochemical redox gradients and microbial communities. Our data reveal iron cycling involving both oxidizing (FeOB) and reducing (FeRB) bacteria. Additionally, we profiled a large microbial iron mat in a tundra seep adjacent to an Arctic stream (Oksrukuyik Creek) where we observed Fe(II) and soluble Fe(III) in a highly reducing environment. The variable distribution of redox-active substances at all the sites yields insights into the nature and distribution of the important terminal electron acceptors in both lacustrine and tundra environments capable of exerting significant influences on the carbon cycle.


Subject(s)
Ferric Compounds , Lakes , Bacteria , Iron/analysis , Lakes/microbiology , Oxidation-Reduction
5.
Water Res ; 212: 118107, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35085845

ABSTRACT

Persulfate activation through electron transfer from humic substances (HS) was investigated. Persulfate consumption in the presence of standard HS and HS model compounds linearly correlated with the phenol contents of the HS. Redox-active carbonyl groups such as aromatic ketones and quinone also contributed to persulfate consumption by donating electrons while being reduced. Phenols activated persulfate through direct electron transfer from the phenolate forms but reduced ketones activated persulfate through reactions between their organic radicals and persulfate. Persulfate was activated more by terrestrially derived aquatic HS containing large numbers of phenol groups than by other species, and this caused more benzene oxidation to occur in the presence of terrestrially derived aquatic HS than in the presence of other species. Larger amounts of sulfate radicals were scavenged by soil-derived HS than other types of HS because soil-derived HS were composed of larger molecules than other types of HS. The fluorescence regional integration volume for HS reacted with persulfate linearly correlated with persulfate consumption. Decreases in the fluorescence regional integration value could be used to predict persulfate activation through electron transfer from HS to persulfate if the electron-donating capacity cannot be determined. Persulfate activation by HS is expected to be stoichiometrically more advantageous than conventional persulfate-Fe2+ processes when treating an aquifer containing large amounts of electron-rich HS.


Subject(s)
Humic Substances , Soil , Electron Transport , Electrons , Humic Substances/analysis , Oxidation-Reduction
6.
Environ Sci Technol ; 53(11): 6273-6281, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31038308

ABSTRACT

Acid mine drainage (AMD) formed from pyrite (iron disulfide) weathering contributes to ecosystem degradation in impacted waters. Solar irradiation has been shown to be an important factor in the biogeochemical cycling of iron in AMD-impacted waters, but its impact on dissolved organic matter (DOM) is unknown. With a typical AMD-impacted water (pH 2.7-3) collected from the Perry State Forest watershed in Ohio, we observed highly efficient (>80%) photochemical mineralization of DOM within hours in a solar simulator resembling twice summer sunlight at 40°N. We confirmed that the mineralization was initially induced by •OH formed from FeOH2+ photodissociation and was inhibited 2-fold by dissolved oxygen removal, suggesting the importance of both the photochemical reaction and oxygen involvement. Size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry elucidated that any remaining organic matter was comprised of smaller and highly aliphatic compounds. The quantitative and qualitative changes in DOM are likely to constitute an important component in regional carbon cycling and nutrient release and to influence downstream aquatic ecosystems in AMD-affected watersheds.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Mining , Ohio , Sunlight
7.
Chemosphere ; 193: 936-942, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29874769

ABSTRACT

We investigated concurrent effects between nano-sized zero-valent iron (NZVI) and dissolved organic matter (DOM). Specific UV absorbance of DOM revealed that aromatic/hydrophobic moieties of DOM were bounded to NZVI surfaces. The DOM fluorescence emission peak shifted toward lower wavelength after NZVI exposure, which indicated removal of aromatic DOM fractions. This blue shift of the emission peak also attributes to the reduction of electron acceptors through NZVI-DOM charge transfer complexes. High molecular weight (103-104 Da) DOM fractions, which are suspected to be both aromatic and hydrophobic, were removed. X-ray absorption spectroscopy (XAS) elucidated that Fe(0) content in the 30-d aged NZVI in the presence of DOM (61.6%) was substantially higher than that in the absence of DOM (25.0%). Corrosion and oxidation of NZVI were mitigated due to interruption of electron transfer by surface bounded DOM and stabilization of Fe(II) by Fe-DOM complexes. The XAS also revealed that the evolution of the iron (oxyhydr)oxide shell of NZVI was significantly altered by complexed aromatic DOM.


Subject(s)
Iron/chemistry , Microscopy, Fluorescence/methods , Water Pollutants, Chemical/chemistry , Water/chemistry , Oxidation-Reduction
8.
Environ Sci Technol ; 52(8): 4489, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29582998
9.
Water Res ; 132: 52-60, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29306699

ABSTRACT

Iron (Fe) plays a critical role in the formation of hydroxyl radical (OH) which may participate in the indirect photodegradation of aquatic contaminants. While Fe photochemistry has been extensively studied, the efficacy of iron amendments for contaminant attenuation in sunlit natural waters has not been well researched. We studied the efficacy of this approach by monitoring OH induced acetochlor (AC) degradation and determining OH production rates with terephthalate (TPA) as a probe. Surface wetland waters as well as model fulvic acid (FA) solutions were amended with Fe(III) salt at different concentrations at pH values of 2.7, 5, and 7.6. We observed no significant enhancement in the AC degradation rate at circumneutral pH. At pH 5, AC degradation increased by more than 50% with an Fe addition up to an [Fe]T ≈ 6 µM and plateaued at high [Fe]T. At the highly acidic pH of acid mine drainage (AMD) waters, AC degradation was enhanced by two-orders-of magnitude with increasing [Fe]T and no plateau was observed under the conditions tested ([Fe]T ≤ 500 µM). While the Fe induced relative difference in OH production rates determined using TPA was useful in elucidating the reaction mechanism for different dissolved organic matter types at different pH values, the absolute value of OH production rates over-predicted the transformation of AC suggesting the existence of unknown side reactions and/or alternative reactive intermediates.


Subject(s)
Hydroxyl Radical/chemistry , Iron/chemistry , Sunlight , Toluidines , Water Pollutants, Chemical , Benzopyrans/chemistry , Hydrogen-Ion Concentration , Industrial Waste , Mining , Photolysis , Phthalic Acids/chemistry , Toluidines/chemistry , Toluidines/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Wetlands
10.
Environ Sci Technol ; 52(2): 722-730, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29185717

ABSTRACT

We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.


Subject(s)
Hydroxyl Radical , Solid Phase Extraction , Chromatography, Gel , Molecular Weight , Reference Standards
11.
Environ Sci Process Impacts ; 19(5): 758-767, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28466914

ABSTRACT

Electron donating capacity (EDC) values were determined for a set of pore water samples collected from the sediments of four separate wetlands in the Cottonwood Lakes Study Area in Jamestown, ND by mediated electrochemical analysis, reaction with substituted nitro(so)benzenes, and calculation based on measured organic carbon and sulfide concentrations. The samples were taken from four hydrologically connected and increasingly sulfidic wetlands within the study site. Parallel trends in EDC values related to hydrologic conditions and to in situ reduced sulfur content were observed by all three methodologies. In particular, it was found that sulfide and dissolved organic matter (DOM) are the primary and secondary reductants, respectively, in these systems. The efficacy of these reductants in transforming organic contaminants, however, is largely driven by native pore water reduced sulfur content. Manipulation of the systems demonstrate that while DOM is capable of reducing highly oxidized contaminants or reactive intermediates, this likely only occurs once the reducing capacity of the sulfide is exhausted. Sulfide therefore was the dominant electron donor in the pore water samples.


Subject(s)
Electrons , Geologic Sediments/chemistry , Humic Substances/analysis , Sulfides/analysis , Water Pollutants, Chemical/analysis , Wetlands , Electrochemical Techniques , Lakes/chemistry , North Dakota , Oxidation-Reduction , Sulfides/chemistry , Water Pollutants, Chemical/chemistry
12.
Glob Chang Biol ; 23(8): 3107-3120, 2017 08.
Article in English | MEDLINE | ID: mdl-28117550

ABSTRACT

Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.


Subject(s)
Carbon/chemistry , Grassland , Methane , Wetlands , North America , Sulfates
13.
Water Res ; 110: 170-179, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28006707

ABSTRACT

The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter (3OM*), singlet oxygen (1O2), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1O2. In all water samples, cimetidine degraded by reaction with 1O2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3OM* and 1O2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E2/E3 ratios (sample absorbance at 254 nm divided by sample absorbance at 365 nm), suggesting that organic matter optical properties may hold promise to predict indirect compound photodegradation rates for various effluent mixing ratios.


Subject(s)
Wastewater , Water Pollutants, Chemical/chemistry , Fresh Water/chemistry , Photolysis , Sulfamethoxazole
14.
Environ Sci Process Impacts ; 18(11): 1406-1416, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27711832

ABSTRACT

Non-point source pesticide pollution is a concern for wetlands in the prairie pothole region (PPR). Recent studies have demonstrated that reduced sulfur species (e.g., bisulfide and polysulfides) in PPR wetland pore waters directly undergo reactions with chloroacetanilide and dinitroaniline compounds. In this paper, the abiotic transformation of two organophosphate compounds, chlorpyrifos and chlorpyrifos-methyl, was studied in PPR wetland pore waters. Chlorpyrifos-methyl reacted significantly faster (up to 4 times) in pore water with reduced sulfur species relative to hydrolysis. No rate enhancement was observed in the transformation of chlorpyrifos in pore water with reduced sulfur species. The lack of reactivity was most likely caused by steric hindrance from the ethyl groups and partitioning to dissolved organic matter (DOM), thereby shielding chlorpyrifos from nucleophilic attack. Significant decreases in reaction rates were observed for chlorpyrifos in pore water with high concentrations of DOM. Rate enhancement due to other reactive species (e.g., organo-sulfur compounds) in pore water was minor for both compounds relative to the influence of bisulfide and DOM.


Subject(s)
Chlorpyrifos/chemistry , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Wetlands , Chlorpyrifos/analogs & derivatives , Grassland , Hydrolysis , Sulfur/chemistry
15.
Environ Sci Technol ; 50(22): 12250-12257, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27737542

ABSTRACT

Isoproturon (IPU) is a phenylurea herbicide used to control broad-leaf grasses on grain fields. Photosensitized transformation induced by excited triplet states of dissolved organic matter (3DOM*) has been identified as an important degradation pathway for IPU in sunlit waters, but the reappearance of IPU in the absence of light is observed after the initial photolysis. In this study, we elucidate the kinetics of this photodegradation and dark-reappearance cycling of IPU in the presence of DOM proxies (aromatic ketones and reference fulvic acids). Using mass spectrometry and nuclear magnetic resonance spectroscopic techniques, a semi-stable intermediate (IPUint) was found to be responsible for IPU reversion and was identified as a hydroperoxyl derivative of IPU. IPUint is photogenerated from incorporation of diatomic oxygen to IPU and is subjected to thermolysis whose rate depends on temperature, pH, the presence of DOM, and inorganic ions. These results are important to understand the overall aquatic fate of IPU and structurally similar compounds under diurnal conditions.


Subject(s)
Ketones , Photolysis , Herbicides/chemistry , Kinetics , Water Pollutants, Chemical
16.
Environ Sci Process Impacts ; 18(10): 1274-1284, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27602544

ABSTRACT

Brominated flame-retardants (BFRs) can be released from consumer products, resulting in accumulation in the surrounding environment and/or long-range transport to remote environments. We evaluated concentration changes in a suite of BFRs, including 13 polybrominated diphenyl ethers (PBDEs) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in air at Toolik Lake, Arctic Alaska during the Northern Hemisphere summer of 2013. A high-volume active air sampler was used to collect 2 day integrated samples at the field station and three flow-through air samplers were used to collect 18 day integrated samples along a transect extending away from the field station. The BDE congeners associated with the penta-BDE commercial mixture (BDE-47, -99, and -100) were the most frequently detected BFRs and were found at concentrations consistent with those reported at other Arctic sites. Gas-particle distributions were influenced by temperature and correlations between gas-phase concentrations and temperature suggested that either volatilization from local sources or re-emission from secondary sources (that is, re-volatilization of BFRs that had migrated northwards from distant sources) was important for the lower-brominated BFRs during the warmer months. Source indicator analysis suggested no single dominant geographic source of BFRs while results from the flow-through samplers indicated that the field station itself was not a significant source of BFRs.


Subject(s)
Air Pollutants/analysis , Bromobenzenes/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Alaska , Arctic Regions , Environmental Monitoring , Lakes
17.
Environ Sci Technol ; 49(17): 10431-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26258946

ABSTRACT

Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.


Subject(s)
Air , Humidity , Laboratories , Models, Theoretical , Pesticides/analysis , Soil/chemistry , Temperature , Linear Models , Soil Pollutants/analysis , Volatilization
18.
Environ Toxicol Chem ; 34(12): 2906-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26184466

ABSTRACT

Hormonally active compounds may move with agricultural runoff from fields with applied manure and biosolids into surface waters where they pose a threat to human and environmental health. Riparian zone plants could remove hormonally active compounds from agricultural runoff. Therefore, sorption to roots, uptake, translocation, and transformation of 3 estrogens (17ß-estradiol, 17α-ethinylestradiol, and zeranol) and 1 androgen (trenbolone acetate) commonly found in animal manure or biosolids were assessed by hydroponically grown hybrid poplar, Populus deltoides x nigra, DN-34, widely used in riparian buffer strips. Results clearly showed that these hormones were rapidly removed from 2 mg L(-1) hydroponic solutions by more than 97% after 10 d of exposure to full poplar plants or live excised poplars (cut-stem, no leaves). Removals by sorption to dead poplar roots that had been autoclaved were significantly less, 71% to 84%. Major transformation products (estrone and estriol for estradiol; zearalanone for zeranol; and 17ß-trenbolone from trenbolone acetate) were detected in the root tissues of all 3 poplar treatments. Root concentrations of metabolites peaked after 1 d to 5 d and then decreased in full and live excised poplars by further transformation. Metabolite concentrations were less in dead poplar treatments and only slowly increased without further transformation. Taken together, these findings show that poplars may be effective in controlling the movement of hormonally active compounds from agricultural fields and avoiding runoff to streams.


Subject(s)
Estradiol/analysis , Ethinyl Estradiol/analysis , Populus/growth & development , Trenbolone Acetate/analysis , Water Pollutants, Chemical/analysis , Zeranol/analysis , Adsorption , Agriculture , Animals , Biodegradation, Environmental , Biotransformation , Chromatography, Liquid , Estradiol/metabolism , Ethinyl Estradiol/metabolism , Hydroponics , Mass Spectrometry , Plant Roots/growth & development , Plant Roots/metabolism , Populus/metabolism , Trenbolone Acetate/metabolism , Water Pollutants, Chemical/metabolism , Zeranol/metabolism
19.
Environ Sci Technol ; 49(6): 3453-63, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25671497

ABSTRACT

Effluent organic matter (EfOM), contained in treated municipal wastewater, differs in composition from naturally occurring dissolved organic matter (DOM). The presence of EfOM may thus alter the photochemical production of reactive intermediates in rivers that receive measurable contributions of treated municipal wastewater. Quantum yield coefficients for excited triplet-state OM (3OM*) and apparent quantum yields for singlet oxygen (1O2) were measured for both whole water samples and OM isolated by solid phase extraction from whole water samples collected upstream and downstream of municipal wastewater treatment plant discharges in three rivers receiving differing effluent contributions: Hockanum R., CT (22% (v/v) effluent flow), E. Fork Little Miami R., OH (11%), and Pomperaug R., CT (6%). While only small differences in production of these reactive intermediates were observed between upstream and downstream whole water samples collected from the same river, yields of 3OM* and 1O2 varied by 30-50% between the rivers. Apparent quantum yields of 1O2 followed similar trends to those of 3OM*, consistent with 3OM* as a precursor to 1O2 formation. Higher 3OM* reactivity was observed for whole water samples than for OM isolates of the same water, suggesting differential recoveries of photoreactive moieties by solid phase extraction. 3OM* and 1O2 yields increased with increasing E2/E3 ratio (A254 nm divided by A365 nm) and decreased with increasing electron donating capacities of the samples, thus exhibiting trends also observed for reference humic and fulvic acid isolates. Mixing experiments with EfOM and DOM isolates showed evidence of quenching of triplet DOM by EfOM when measured yields were compared to theoretical yields. Together, the results suggest that effluent contributions of up to 25% (v/v) to river systems have a negligible influence on photochemical production of 3OM* and 1O2 apparently because of quenching of triplet DOM by EfOM. Furthermore, the results highlight the importance of whole water studies for quantifying in situ photoreactivity, particularly for 3OM*.


Subject(s)
Complex Mixtures/analysis , Fresh Water/chemistry , Organic Chemicals/analysis , Rivers/chemistry , Wastewater/chemistry , Photochemistry , Singlet Oxygen/analysis
20.
Environ Sci Process Impacts ; 16(9): 2063, 2014 Sep 20.
Article in English | MEDLINE | ID: mdl-25119823
SELECTION OF CITATIONS
SEARCH DETAIL