Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860651

ABSTRACT

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.


Subject(s)
ADAM17 Protein , Langerhans Cells , Lupus Erythematosus, Systemic , Skin , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Animals , Humans , Langerhans Cells/metabolism , Mice , Skin/metabolism , Skin/pathology , Skin/radiation effects , Lupus Erythematosus, Systemic/metabolism , Ultraviolet Rays/adverse effects , Female , Disease Models, Animal , Photosensitivity Disorders/metabolism , Interferons/metabolism , Mice, Inbred MRL lpr
2.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405750

ABSTRACT

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids, widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the GC receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.

3.
JBMR Plus ; 5(11): e10535, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34761143

ABSTRACT

The number of total joint replacements (TJRs) in the United States is increasing annually. Cementless implants are intended to improve upon traditional cemented implants by allowing bone growth directly on the surface to improve implant longevity. One major complication of TJR is implant loosening, which is related to deficient osseointegration in cementless TJRs. Although poor osseointegration in aged patients is typically attributed to decreased basal bone mass, little is known about the molecular pathways that compromise the growth of bone onto porous titanium implants. To identify the pathways important for osseointegration that are compromised by aging, we developed an approach for transcriptomic profiling of peri-implant tissue in young and aged mice using our murine model of osseointegration. Based on previous findings of changes of bone quality associated with aging, we hypothesized that aged mice have impaired activation of bone anabolic pathways at the bone-implant interface. We found that pathways most significantly downregulated in aged mice relative to young mice are related to angiogenic, Notch, and Wnt signaling. Downregulation of these pathways is associated with markedly increased expression of inflammatory and immune genes at the bone-implant interface in aged mice. These results identify osseointegration pathways affected by aging and suggest that an increased inflammatory response in aged mice may compromise peri-implant bone healing. Targeting the Notch and Wnt pathways, promoting angiogenesis, or modulating the immune response at the peri-implant site may enhance osseointegration and improve the outcome of joint replacement in older patients. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Nat Commun ; 12(1): 4813, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376664

ABSTRACT

Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Lupus Erythematosus, Systemic/immunology , Age Factors , Aging/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CD11c Antigen/immunology , CD11c Antigen/metabolism , Cell Differentiation/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Guanine Nucleotide Exchange Factors/metabolism , Kaplan-Meier Estimate , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Sex Factors , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism
5.
Sci Rep ; 11(1): 11493, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075069

ABSTRACT

Autologous blood-derived products such as platelet-rich plasma (PRP) are widely used to treat musculoskeletal conditions, including knee osteoarthritis (OA). However, the clinical outcomes after PRP administration are often variable, and there is limited information about the specific characteristics of PRP that impact bioactivity and clinical responses. In this study, we aimed to develop an integrative workflow to evaluate responses to PRP in vitro, and to assess if the in vitro responses to PRP are associated with the PRP composition and clinical outcomes in patients with knee OA. To do this, we used a coculture system of macrophages and fibroblasts paired with transcriptomic analyses to comprehensively characterize the modulation of inflammatory responses by PRP in vitro. Relying on patient-reported outcomes and achievement of minimal clinically important differences in OA patients receiving PRP injections, we identified responders and non-responders to the treatment. Comparisons of PRP from these patient groups allowed us to identify differences in the composition and in vitro activity of PRP. We believe that our integrative workflow may enable the development of targeted approaches that rely on PRP and other orthobiologics to treat musculoskeletal pathologies.


Subject(s)
Osteoarthritis, Knee , Platelet-Rich Plasma , Aged , Female , Humans , Injections, Intra-Articular , Male , Middle Aged , Osteoarthritis, Knee/blood , Osteoarthritis, Knee/therapy , Treatment Outcome
7.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33045064

ABSTRACT

Macrophages (MФ) and microglia (MG) are critical in the pathogenesis of multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Glucocorticoids (GCs) and interferon ß (IFN-ß) are frontline treatments for MS, and disrupting each pathway in mice aggravates EAE. Glucocorticoid receptor-interacting protein 1 (GRIP1) facilitates both GR and type I IFN transcriptional actions; hence, we evaluated the role of GRIP1 in neuroinflammation. Surprisingly, myeloid cell-specific loss of GRIP1 dramatically reduced EAE severity, immune cell infiltration of the CNS, and MG activation and demyelination specifically during the neuroinflammatory phase of the disease, yet also blunted therapeutic properties of IFN-ß. MФ/MG transcriptome analyses at the bulk and single-cell levels revealed that GRIP1 deletion attenuated nuclear receptor, inflammatory and, interestingly, type I IFN pathways and promoted the persistence of a homeostatic MG signature. Together, these results uncover the multifaceted function of type I IFN in MS/EAE pathogenesis and therapy, and an unexpectedly permissive role of myeloid cell GRIP1 in neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Interferon-beta/pharmacology , Macrophages/immunology , Multiple Sclerosis , Nuclear Receptor Coactivator 2/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Macrophages/pathology , Mice , Mice, Knockout , Microglia/immunology , Microglia/pathology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Nuclear Receptor Coactivator 2/genetics
8.
Nat Commun ; 11(1): 2286, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385332

ABSTRACT

Studies on macrophage gene expression have historically focused on events leading to RNA polymerase II recruitment and transcription initiation, whereas the contribution of post-initiation steps to macrophage activation remains poorly understood. Here, we report that widespread promoter-proximal RNA polymerase II pausing in resting macrophages is marked by co-localization of the negative elongation factor (NELF) complex and facilitated by PU.1. Upon inflammatory stimulation, over 60% of activated transcriptome is regulated by polymerase pause-release and a transient genome-wide NELF dissociation from chromatin, unexpectedly, independent of CDK9, a presumed NELF kinase. Genetic disruption of NELF in macrophages enhanced transcription of AP-1-encoding Fos and Jun and, consequently, AP-1 targets including Il10. Augmented expression of IL-10, a critical anti-inflammatory cytokine, in turn, attenuated production of pro-inflammatory mediators and, ultimately, macrophage-mediated inflammation in vivo. Together, these findings establish a previously unappreciated role of NELF in constraining transcription of inflammation inhibitors thereby enabling inflammatory macrophage activation.


Subject(s)
Anti-Inflammatory Agents/metabolism , Gene Expression Regulation , Inflammation/genetics , Macrophages/pathology , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Interleukin-10/metabolism , Macrophage Activation/genetics , Macrophages/metabolism , Mice , Nucleotide Motifs/genetics , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription Initiation Site , Transcription, Genetic , Transcriptional Activation/genetics
9.
J Clin Invest ; 130(7): 3654-3670, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32229726

ABSTRACT

Germinal center (GC) responses require B cells to respond to a dynamic set of intercellular and microenvironmental signals that instruct B cell positioning, differentiation, and metabolic reprogramming. RHO-associated coiled-coil-containing protein kinase 2 (ROCK2), a serine-threonine kinase that can be therapeutically targeted by ROCK inhibitors or statins, is a key downstream effector of RHOA GTPases. Although RHOA-mediated pathways are emerging as critical regulators of GC responses, the role of ROCK2 in B cells is unknown. Here, we found that ROCK2 was activated in response to key T cell signals like CD40 and IL-21 and that it regulated GC formation and maintenance. RNA-Seq analyses revealed that ROCK2 controlled a unique transcriptional program in GC B cells that promoted optimal GC polarization and cholesterol biosynthesis. ROCK2 regulated this program by restraining AKT activation and subsequently enhancing FOXO1 activity. ATAC-Seq (assay for transposase-accessible chromatin with high-throughput sequencing) and biochemical analyses revealed that the effects of ROCK2 on cholesterol biosynthesis were instead mediated via a novel mechanism. ROCK2 directly phosphorylated interferon regulatory factor 8 (IRF8), a crucial mediator of GC responses, and promoted its interaction with sterol regulatory element-binding transcription factor 2 (SREBP2) at key regulatory regions controlling the expression of cholesterol biosynthetic enzymes, resulting in optimal recruitment of SREBP2 at these sites. These findings thus uncover ROCK2 as a multifaceted and therapeutically targetable regulator of GC responses.


Subject(s)
B-Lymphocytes/metabolism , Cholesterol/biosynthesis , Germinal Center/metabolism , rho-Associated Kinases/metabolism , Animals , B-Lymphocytes/cytology , Cell Line , Cholesterol/genetics , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Germinal Center/cytology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , rho-Associated Kinases/genetics
10.
Nat Immunol ; 19(4): 407-419, 2018 04.
Article in English | MEDLINE | ID: mdl-29483597

ABSTRACT

Age-associated B cells (ABCs) are a subset of B cells dependent on the transcription factor T-bet that accumulate prematurely in autoimmune settings. The pathways that regulate ABCs in autoimmunity are largely unknown. SWAP-70 and DEF6 (also known as IBP or SLAT) are the only two members of the SWEF family, a unique family of Rho GTPase-regulatory proteins that control both cytoskeletal dynamics and the activity of the transcription factor IRF4. Notably, DEF6 is a newly identified human risk variant for systemic lupus erythematosus. Here we found that the lupus syndrome that developed in SWEF-deficient mice was accompanied by the accumulation of ABCs that produced autoantibodies after stimulation. ABCs from SWEF-deficient mice exhibited a distinctive transcriptome and a unique chromatin landscape characterized by enrichment for motifs bound by transcription factors of the IRF and AP-1 families and the transcription factor T-bet. Enhanced ABC formation in SWEF-deficient mice was controlled by the cytokine IL-21 and IRF5, whose variants are strongly associated with lupus. The lack of SWEF proteins led to dysregulated activity of IRF5 in response to stimulation with IL-21. These studies thus elucidate a previously unknown signaling pathway that controls ABCs in autoimmunity.


Subject(s)
Autoimmunity/immunology , B-Lymphocyte Subsets/immunology , Interferon Regulatory Factors/immunology , Lupus Erythematosus, Systemic/immunology , Animals , B-Lymphocyte Subsets/pathology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/immunology , Female , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/immunology , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/immunology , Nuclear Proteins/deficiency , Nuclear Proteins/immunology
11.
Elife ; 72018 02 09.
Article in English | MEDLINE | ID: mdl-29424686

ABSTRACT

The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.


Subject(s)
Gene Expression Regulation , Inflammation , Macrophages/immunology , Receptors, Glucocorticoid/metabolism , Transcription, Genetic , Animals , Cells, Cultured , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
12.
J Clin Invest ; 128(4): 1397-1412, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29369823

ABSTRACT

Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.


Subject(s)
Carrier Proteins/biosynthesis , ErbB Receptors/metabolism , Kidney/metabolism , Lupus Nephritis/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Carrier Proteins/genetics , Disease Models, Animal , ErbB Receptors/genetics , Gene Expression Regulation , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Kidney/pathology , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mice , Mice, Knockout , Receptors, IgG/genetics , Receptors, IgG/metabolism , Tumor Necrosis Factor-alpha/genetics
13.
Nat Commun ; 8(1): 1739, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170386

ABSTRACT

The glucocorticoid (GC) receptor (GR) suppresses inflammation by activating anti-inflammatory and repressing pro-inflammatory genes. GR-interacting protein-1 (GRIP1) is a GR corepressor in macrophages, however, whether GRIP1 mediates GR-activated transcription, and what dictates its coactivator versus corepressor properties is unknown. Here we report that GRIP1 loss in macrophages attenuates glucocorticoid induction of several anti-inflammatory targets, and that GC treatment of quiescent macrophages globally directs GRIP1 toward GR binding sites dominated by palindromic GC response elements (GRE), suggesting a non-redundant GRIP1 function as a GR coactivator. Interestingly, GRIP1 is phosphorylated at an N-terminal serine cluster by cyclin-dependent kinase-9 (CDK9), which is recruited into GC-induced GR:GRIP1:CDK9 hetero-complexes, producing distinct GRE-specific GRIP1 phospho-isoforms. Phosphorylation potentiates GRIP1 coactivator but, remarkably, not its corepressor properties. Consistently, phospho-GRIP1 and CDK9 are not detected at GR transrepression sites near pro-inflammatory genes. Thus, GR restricts actions of its own coregulator via CDK9-mediated phosphorylation to a subset of anti-inflammatory genes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cyclin-Dependent Kinase 9/metabolism , Glucocorticoids/metabolism , Macrophages/metabolism , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Binding Sites/genetics , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Line , Cells, Cultured , Dexamethasone/pharmacology , Gene Knockdown Techniques , Glucocorticoids/pharmacology , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Phosphorylation , Receptors, Glucocorticoid/metabolism , Response Elements , Transcriptional Activation
14.
Nat Commun ; 8(1): 254, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811467

ABSTRACT

Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (TFH) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of TFH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.


Subject(s)
Autoimmunity , Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Lupus Erythematosus, Systemic/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Protein Binding , Protein Biosynthesis , Proto-Oncogene Proteins c-bcl-6/genetics , Signal Transduction
15.
Ann Rheum Dis ; 76(4): 740-747, 2017 04.
Article in English | MEDLINE | ID: mdl-28283529

ABSTRACT

OBJECTIVES: Deregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. METHODS: ROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. RESULTS: ROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. CONCLUSIONS: ROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches.


Subject(s)
Arthritis, Rheumatoid/blood , Interleukin-17/metabolism , Interleukins/metabolism , Lupus Erythematosus, Systemic/blood , T-Lymphocytes/metabolism , Th17 Cells/metabolism , Adult , Aged , Amides/pharmacology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Case-Control Studies , Cells, Cultured , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Signal Transduction , Simvastatin/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/enzymology , Th17 Cells/drug effects , Th17 Cells/enzymology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors , rhoA GTP-Binding Protein/metabolism
16.
Proc Natl Acad Sci U S A ; 114(5): 932-937, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096406

ABSTRACT

Farming domesticated millets, tending pigs, and hunting constituted the core of human subsistence strategies during Neolithic Yangshao (5000-2900 BC). Introduction of wheat and barley as well as the addition of domesticated herbivores during the Late Neolithic (∼2600-1900 BC) led to restructuring of ancient Chinese subsistence strategies. This study documents a dietary shift from indigenous millets to the newly introduced cereals in northcentral China during the Bronze Age Eastern Zhou Dynasty (771-221 BC) based on stable isotope analysis of human and animal bone samples. Our results show that this change affected females to a greater degree than males. We find that consumption of the newly introduced cereals was associated with less consumption of animal products and a higher rate of skeletal stress markers among females. We hypothesized that the observed separation of dietary signatures between males and females marks the rise of male-biased inequality in early China. We test this hypothesis by comparing Eastern Zhou human skeletal data with those from Neolithic Yangshao archaeological contexts. We find no evidence of male-female inequality in early farming communities. The presence of male-biased inequality in Eastern Zhou society is supported by increased body height difference between the sexes as well as the greater wealth of male burials.


Subject(s)
Agriculture/history , Diet/history , Socioeconomic Factors/history , Animals , Archaeology , Body Height , Bone and Bones/pathology , Burial , Carbon Isotopes , China , Crops, Agricultural , Female , History, Ancient , Humans , Male , Radiometric Dating , Sex Characteristics , Stress, Physiological
17.
Nat Commun ; 7: 12254, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27464507

ABSTRACT

Diet-induced obesity causes chronic macrophage-driven inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT macrophages, however, differ in their origin, gene expression and activities: unlike infiltrating monocyte-derived inflammatory macrophages, WAT-resident macrophages counteract inflammation and insulin resistance, yet, the mechanisms underlying their transcriptional programming remain poorly understood. We recently reported that a nuclear receptor cofactor-glucocorticoid receptor (GR)-interacting protein (GRIP)1-cooperates with GR to repress inflammatory genes. Here, we show that GRIP1 facilitates macrophage programming in response to IL4 via a GR-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4-a driver of tissue-resident macrophage differentiation. Moreover, obese mice conditionally lacking GRIP1 in macrophages develop massive macrophage infiltration and inflammation in metabolic tissues, fatty livers, hyperglycaemia and insulin resistance recapitulating metabolic disease. Thus, GRIP1 is a critical regulator of immunometabolism, which engages distinct transcriptional mechanisms to coordinate the balance between macrophage populations and ultimately promote metabolic homeostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Polarity , Homeostasis , Macrophages/cytology , Macrophages/metabolism , Nerve Tissue Proteins/metabolism , Trans-Activators/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Animals , Cell Line , Cell Polarity/drug effects , Diet, High-Fat , Fatty Liver/metabolism , Fatty Liver/pathology , Glucose Intolerance , Homeostasis/drug effects , Inflammation/metabolism , Inflammation/pathology , Interleukin-4/pharmacology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Models, Biological , Nerve Tissue Proteins/deficiency , Phenotype , Protein Binding
18.
Arthritis Rheumatol ; 68(6): 1454-66, 2016 06.
Article in English | MEDLINE | ID: mdl-26816213

ABSTRACT

OBJECTIVE: Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. METHODS: Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. RESULTS: The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. CONCLUSION: This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development.


Subject(s)
Interferon Regulatory Factors/physiology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Regulatory/physiology , Animals , DNA-Binding Proteins/biosynthesis , Female , Guanine Nucleotide Exchange Factors/biosynthesis , Male , Mice , Mice, Knockout , Minor Histocompatibility Antigens/biosynthesis , Nuclear Proteins/biosynthesis , T-Lymphocytes, Regulatory/metabolism
19.
Annu Rev Physiol ; 78: 155-80, 2016.
Article in English | MEDLINE | ID: mdl-26667074

ABSTRACT

Glucocorticoid hormones (GC) regulate essential physiological functions including energy homeostasis, embryonic and postembryonic development, and the stress response. From the biomedical perspective, GC have garnered a tremendous amount of attention as highly potent anti-inflammatory and immunosuppressive medications indispensable in the clinic. GC signal through the GC receptor (GR), a ligand-dependent transcription factor whose structure, DNA binding, and the molecular partners that it employs to regulate transcription have been under intense investigation for decades. In particular, next-generation sequencing-based approaches have revolutionized the field by introducing a unified platform for a simultaneous genome-wide analysis of cellular activities at the level of RNA production, binding of transcription factors to DNA and RNA, and chromatin landscape and topology. Here we describe fundamental concepts of GC/GR function as established through traditional molecular and in vivo approaches and focus on the novel insights of GC biology that have emerged over the last 10 years from the rapidly expanding arsenal of system-wide genomic methodologies.


Subject(s)
Genome/genetics , Glucocorticoids/genetics , Glucocorticoids/metabolism , Signal Transduction/physiology , Animals , Genomics/methods , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
BMC Genomics ; 15: 656, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25099603

ABSTRACT

BACKGROUND: Inflammation triggered by infection or injury is tightly controlled by glucocorticoid hormones which signal via a dedicated transcription factor, the Glucocorticoid Receptor (GR), to regulate hundreds of genes. However, the hierarchy of transcriptional responses to GR activation and the molecular basis of their oftentimes non-linear dynamics are not understood. RESULTS: We investigated early glucocorticoid-driven transcriptional events in macrophages, a cell type highly responsive to both pro- and anti-inflammatory stimuli. Using whole transcriptome analyses in resting and acutely lipopolysaccharide (LPS)-stimulated macrophages, we show that early GR target genes form dense networks with the majority of control nodes represented by transcription factors. The expression dynamics of several glucocorticoid-responsive genes are consistent with feed forward loops (FFL) and coincide with rapid GR recruitment. Notably, GR binding sites in genes encoding members of the KLF transcription factor family colocalize with KLF binding sites. Moreover, our gene expression, transcription factor binding and computational data are consistent with the existence of the GR-KLF9-KLF2 incoherent FFL. Analysis of LPS-downregulated genes revealed striking enrichment in multimerized Zn-fingers- and KRAB domain-containing proteins known to bind nucleic acids and repress transcription by propagating heterochromatin. This raises an intriguing possibility that an increase in chromatin accessibility in inflammatory macrophages results from broad downregulation of negative chromatin remodelers. CONCLUSIONS: Pro- and anti-inflammatory stimuli alter the expression of a vast array of transcription factors and chromatin remodelers. By regulating multiple transcription factors, which propagate the initial hormonal signal, GR acts as a coordinating hub in anti-inflammatory responses. As several KLFs promote the anti-inflammatory program in macrophages, we propose that GR and KLFs functionally cooperate to curb inflammation.


Subject(s)
Computational Biology , Gene Regulatory Networks , Macrophages/metabolism , Receptors, Glucocorticoid/metabolism , Transcription Factors/metabolism , Animals , Dexamethasone/pharmacology , Down-Regulation/drug effects , Gene Expression Profiling , Gene Regulatory Networks/drug effects , Glucocorticoids/pharmacology , Kinetics , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Models, Biological , Signal Transduction/drug effects , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...