Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(10): 2569-2582, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38445602

ABSTRACT

The structural and chemical modifications on the surface of pure and alkali-doped aluminosilicate (AS) glasses due to hydrolysis are investigated using ab initio molecular dynamics. The effects of water on the glass network are fully elucidated by analyzing the short- and intermediate-range structural orders embedded in the pair distribution function, bond length and angle distribution, coordination number, and interatomic bonding. A novel concept of total bond order is used to quantify and compare the strength of bonds in hydrated and unhydrated glasses. We show that AS glass is hydrolyzed by water diffusion near the surface and by proton (H+) transfers into the bulk, which increases with time. Hence, a dissolved glass-water interface becomes rich in Si-OH and Al-OH. The alkali ions associated with the nonbridging oxygen accelerate the hydrolysis by facilitating water and H+ diffusion. Al is more impacted by hydrolysis than Si, resulting in greater variation in the Al-O bond order than Si-O. Doping of NaCl and KCl enhances the ionization of water and the hydrolysis of ASs with increased salt concentration. The KCl doping ionizes more water molecules and causes more degradation of the glass network than NaCl. Co-doping of Na and K results in a mixed alkali effect due to complex interatomic bonding from different-sized ions. These exceptionally detailed findings in highly complex glasses with varying salt compositions provide new and unprecedented atomistic insights that can help to understand the hydrolysis and dissolution mechanisms of ASs and other silicate glasses.

2.
RSC Adv ; 13(51): 36468-36476, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38099250

ABSTRACT

High-entropy alloys (HEAs) have attracted great attention for many biomedical applications. However, the nature of interatomic interactions in this class of complex multicomponent alloys is not fully understood. We report, for the first time, the results of theoretical modeling for porosity in a large biocompatible HEA TiNbTaZrMo using an atomistic supercell of 1024 atoms that provides new insights and understanding. Our results demonstrated the deficiency of using the valence electron count, quantification of large lattice distortion, validation of mechanical properties with available experimental data to reduce Young's modulus. We utilized the novel concepts of the total bond order density (TBOD) and partial bond order density (PBOD) via ab initio quantum mechanical calculations as an effective theoretical means to chart a road map for the rational design of complex multicomponent HEAs for biomedical applications.

3.
Comput Biol Med ; 167: 107576, 2023 12.
Article in English | MEDLINE | ID: mdl-37871435

ABSTRACT

The emergence of Omicron SARS-CoV-2 subvariants (BA.1, BA.2, BA.4, and BA.5), with an unprecedented number of mutations in their receptor-binding domain (RBD) of the spike-protein, has fueled a resurgence of COVID-19 infections, posing a major challenge to the efficacy of existing vaccines and monoclonal antibody (mAb) therapeutics. We conducted a systematic molecular dynamics (MD) simulation to investigate how the RBD mutations of these subvariants affect the interactions with broad mAbs including AstraZeneca (COV2-2196 and COV2-2130), Brii Biosciences (BRII-196), Celltrion (CT-P59), Eli Lilly (LY-CoV555 and LY-CoV016), Regeneron (REGN10933 and REGN10987), Vir Biotechnology (S309), and S2X259. Our results show a complete loss of binding for COV2-2196, BRII-196, CT-P59, and LY-CoV555 with all Omicron RBDs. Additionally, REGN10987 totally loses its binding with BA.1, but retains a partial binding with BA.2 and BA.4/5. The binding reduction is significant for LY-CoV016 and REGN10933 but moderate for COV2-2130. S309 and S2X259 retain their binding with BA.1 but exhibit decreased binding with other subvariants. We introduce a mutational escape map for each mAb to identify the key RBD sites and the corresponding critical mutations. Overall, our findings suggest that the majority of therapeutic mAbs have diminished or missing activity against Omicron subvariants, indicating the urgent need for a new therapeutic mAb with a better design.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Mutation , COVID-19/genetics
4.
Sci Rep ; 13(1): 16218, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758746

ABSTRACT

GeTe-based and PbSe-based high-entropy compounds have outstanding thermoelectric (TE) performance and crucial applications in mid and high temperatures. Recently, the optimization of TE performance of high-entropy compounds has been focused on reducing thermal conductivity by strengthening the phonon scattering process to improve TE performance. We report a first-principles investigation on nine GeTe-based high-entropy chalcogenide solid solutions constituted of eight metallic elements (Ag, Pb, Sb, Bi, Cu, Cd, Mn, and Sn) and 13 PbSe-based high-entropy chalcogenide solid solutions: Pb0.99-ySb0.012SnySe1-2xTexSx (x = 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and y = 0) and Pb0.99-ySb0.012SnySe1-2xTexSx (y = 0.05, 0.1, 0.15, 0.2, 0.25 and x = 0.25). We have investigated the mechanical properties focusing on Debye temperature (ΘD), thermal conductivity (κ), Grüneisen parameter (γα), dominant phonon wavelength (λdom), and melting temperature (Tm). We find that the lattice thermal conductivity is significantly reduced when GeTe is alloyed into the following compositions: Ge0.75Sb0.13Pb0.12Te, Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te, and Ge0.61Ag0.11Sb0.13Pb0.12Mn0.05Bi0.01Te. This reduction is due to the mass increase and strain fluctuations. The results also show that Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te solid solution has the lowest Young's modulus (30.362 GPa), bulk and shear moduli (18.626 and 12.359 GPa), average sound velocity (1653.128 m/sec), Debye temperature (151.689 K), lattice thermal conductivity (0.574 W.m-1.K-1), dominant phonon wavelength (0.692 Å), and melting temperature (535.91 K). Moreover, Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te has the highest Grüneisen parameter with a reduced and temperature-independent lattice thermal conductivity. The positive correlation between ΘD and κ is revealed. Alloying of PbSe-based high-entropy by Sb, Sn, Te, and S atoms at the Se and Pb sites resulted in much higher shear strains resulted in the reduction of phonon velocity, a reduced ΘD, and a lower lattice thermal conductivity.

5.
Biomedicines ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36831053

ABSTRACT

The spike protein (S-protein) is a crucial part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with its many domains responsible for binding, fusion, and host cell entry. In this review we use the density functional theory (DFT) calculations to analyze the atomic-scale interactions and investigate the consequences of mutations in S-protein domains. We specifically describe the key amino acids and functions of each domain, which are essential for structural stability as well as recognition and fusion processes with the host cell; in addition, we speculate on how mutations affect these properties. Such unprecedented large-scale ab initio calculations, with up to 5000 atoms in the system, are based on the novel concept of amino acid-amino acid-bond pair unit (AABPU) that allows for an alternative description of proteins, providing valuable information on partial charge, interatomic bonding and hydrogen bond (HB) formation. In general, our results show that the S-protein mutations for different variants foster an increased positive partial charge, alter the interatomic interactions, and disrupt the HB networks. We conclude by outlining a roadmap for future computational research of biomolecular virus-related systems.

6.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676624

ABSTRACT

The electronic structure, interatomic bonding, and mechanical properties of two supercell models of Ni-based superalloys are calculated using ab initio density functional theory methods. The alloys, Haynes282 and Inconel740, are face-centered cubic lattices with 864 atoms and eleven elements. These multi-component alloys have very complex electronic structure, bonding and partial-charge distributions depending on the composition and strength of the local bonding environment. We employ the novel concept of total bond order density (TBOD) and its partial components (PBOD) to ascertain the internal cohesion that controls the intricate balance between the propensity of metallic bonding between Ni, Cr and Co, and the strong bonds with C and Al. We find Inconel740 has slightly stronger mechanical properties than Haynes282. Both Inconel740 and Haynes282 show ductile natures based on Poisson's ratio. Poisson's ratio shows marginal correlation with the TBOD. Comparison with more conventional high entropy alloys with equal components are discussed.

7.
Microorganisms ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36296275

ABSTRACT

The attachment of the spike protein in SARS-CoV-2 to host cells and the initiation of viral invasion are two critical processes in the viral infection and transmission in which the presence of unique furin (S1/S2) and TMPRSS2 (S2') cleavage sites play a pivotal role. We provide a detailed analysis of the impact of the BA.1 Omicron mutations vicinal to these cleavage sites using a novel computational method based on the amino acid-amino acid bond pair unit (AABPU), a specific protein structural unit as a proxy for quantifying the atomic interaction. Our study is focused mainly on the spike region between subdomain 2 (SD2) and the central helix (CH), which contains both S1/S2 and S2' cleavage sites. Based on ab initio quantum calculations, we have identified several key features related to the electronic structure and bonding of the Omicron mutations that significantly increase the size of the relevant AABPUs and the positive charge. These findings enable us to conjecture on the biological role of Omicron mutations and their specific effects on cleavage sites and identify the principles that can be of some value in analyzing new variants.

8.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36077490

ABSTRACT

The receptor-binding domain (RBD) is the essential part in the Spike-protein (S-protein) of SARS-CoV-2 virus that directly binds to the human ACE2 receptor, making it a key target for many vaccines and therapies. Therefore, any mutations at this domain could affect the efficacy of these treatments as well as the viral-cell entry mechanism. We introduce ab initio DFT-based computational study that mainly focuses on two parts: (1) Mutations effects of both Delta and Omicron variants in the RBD-SD1 domain. (2) Impact of Omicron RBD mutations on the structure and properties of the RBD-ACE2 interface system. The in-depth analysis is based on the novel concept of amino acid-amino acid bond pair units (AABPU) that reveal the differences between the Delta and/or Omicron mutations and its corresponding wild-type strain in terms of the role played by non-local amino acid interactions, their 3D shapes and sizes, as well as contribution to hydrogen bonding and partial charge distributions. Our results also show that the interaction of Omicron RBD with ACE2 significantly increased its bonding between amino acids at the interface providing information on the implications of penetration of S-protein into ACE2, and thus offering a possible explanation for its high infectivity. Our findings enable us to present, in more conspicuous atomic level detail, the effect of specific mutations that may help in predicting and/or mitigating the next variant of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acids/genetics , Angiotensin-Converting Enzyme 2/genetics , Humans , Mutation , Protein Binding , Receptors, Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Syndactyly
9.
J Phys Chem Lett ; 13(17): 3915-3921, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35481766

ABSTRACT

The emergence of new SARS-CoV-2 Omicron variant of concern (OV) has exacerbated the COVID-19 pandemic because of a large number of mutations in the spike protein, particularly in the receptor-binding domain (RBD), resulting in highly contagious and/or vaccine-resistant strains. Herein, we present a systematic analysis based on detailed molecular dynamics (MD) simulations in order to understand how the OV RBD mutations affect the ACE2 binding. We show that the OV RBD binds to ACE2 more efficiently and tightly predominantly because of strong electrostatic interactions, thereby promoting increased infectivity and transmissibility compared to other strains. Some of the OV RBD mutations are predicted to affect the antibody neutralization either through their role in the S-protein conformational changes, such as S371L, S373P, and S375F, or through changing its surface charge distribution, such as G339D, N440K, T478K, and E484A. Other mutations, such as K417N, G446S, and Y505H, decrease the ACE2 binding, whereas S447N, Q493R, G496S, Q498R, and N501Y tend to increase it.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Mutation , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Materials (Basel) ; 15(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454538

ABSTRACT

Chalcogenide crystals have a wide range of applications, especially as thermoelectric materials for energy conversion. Thermoelectric materials can be used to generate an electric current from a temperature gradient based on the Seebeck effect and based on the Peltier effect, and they can be used in cooling applications. Using first-principles calculations and semiclassical Boltzmann theory, we have computed the Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor, and figure of merit of 30 chalcogenide crystals. A Quantum Espresso package is used to calculate the electronic properties and locate the Fermi level. The transport properties are then calculated using the BoltzTraP code. The 30 crystals are divided into two groups. The first group has four crystals with quaternary composition (A2BCQ4) (A = Tl; B = Cd, Hg; C = Si, Ge, Sn; Q = S, Se, Te). The second group contains 26 crystals with the ternary composition (A'B'Q2) (A' = Ag, Cu, Au, Na; B' = B, Al, Ga, In; Q = S, Se, Te). Among these 30 chalcogenide crystals, the results for 11 crystals: Tl2CdGeSe4, Tl2CdSnSe4, Tl2HgSiSe4, Tl2HgSnS4, AuBSe2, AuBTe2, AuAlTe2, AuGaTe2, AuInTe2, AgAlSe2, and AgAlTe2 are revealed for the first time. In addition, temperature-dependent transport properties of pure and doped AgSbSe2 and AgSbTe2 crystals with dopant compositions of AgSb0.94Cd0.06Te2 and AgSbTe1.85Se0.15 were explored. These results provide an excellent database for bulk chalcogenides crucial for a wide range of potential applications in renewable energy fields.

11.
Int J Mol Sci ; 23(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35270013

ABSTRACT

The most recent Omicron variant of SARS-CoV-2 has caused global concern and anxiety. The only thing certain about this strain, with a large number of mutations in the spike protein, is that it spreads quickly, seems to evade immune defense, and mitigates the benefits of existing vaccines. Based on the ultra-large-scale ab initio computational modeling of the receptor binding motif (RBM) and the human angiotensin-converting enzyme-2 (ACE2) interface, we provide the details of the effect of Omicron mutations at the fundamental atomic scale level. In-depth analysis anchored in the novel concept of amino acid-amino acid bond pair units (AABPU) indicates that mutations in the Omicron variant are connected with (i) significant changes in the shape and structure of AABPU components, together with (ii) significant increase in the positive partial charge, which facilitates the interaction with ACE2. We have identified changes in bonding due to mutations in the RBM. The calculated bond order, based on AABPU, reveals that the Omicron mutations increase the binding strength of RBM to ACE2. Our findings correlate with and are instrumental to explain the current observations and can contribute to the prediction of next potential new variant of concern.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Mutation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/genetics , COVID-19/epidemiology , COVID-19/virology , Humans , Models, Molecular , Pandemics/prevention & control , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization , Virus Replication
12.
Viruses ; 14(3)2022 02 24.
Article in English | MEDLINE | ID: mdl-35336872

ABSTRACT

The SARS-CoV-2 Delta variant is emerging as a globally dominant strain. Its rapid spread and high infection rate are attributed to a mutation in the spike protein of SARS-CoV-2 allowing for the virus to invade human cells much faster and with an increased efficiency. In particular, an especially dangerous mutation P681R close to the furin cleavage site has been identified as responsible for increasing the infection rate. Together with the earlier reported mutation D614G in the same domain, it offers an excellent instance to investigate the nature of mutations and how they affect the interatomic interactions in the spike protein. Here, using ultra large-scale ab initio computational modeling, we study the P681R and D614G mutations in the SD2-FP domain, including the effect of double mutation, and compare the results with the wild type. We have recently developed a method of calculating the amino-acid-amino-acid bond pairs (AABP) to quantitatively characterize the details of the interatomic interactions, enabling us to explain the nature of mutation at the atomic resolution. Our most significant finding is that the mutations reduce the AABP value, implying a reduced bonding cohesion between interacting residues and increasing the flexibility of these amino acids to cause the damage. The possibility of using this unique mutation quantifiers in a machine learning protocol could lead to the prediction of emerging mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Computer Simulation , Humans , Mutation , SARS-CoV-2/genetics
13.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055023

ABSTRACT

A rational therapeutic strategy is urgently needed for combating SARS-CoV-2 infection. Viral infection initiates when the SARS-CoV-2 receptor-binding domain (RBD) binds to the ACE2 receptor, and thus, inhibiting RBD is a promising therapeutic for blocking viral entry. In this study, the structure of lead antiviral candidate binder (LCB1), which has three alpha-helices (H1, H2, and H3), is used as a template to design and simulate several miniprotein RBD inhibitors. LCB1 undergoes two modifications: structural modification by truncation of the H3 to reduce its size, followed by single and double amino acid substitutions to enhance its binding with RBD. We use molecular dynamics (MD) simulations supported by ab initio density functional theory (DFT) calculations. Complete binding profiles of all miniproteins with RBD have been determined. The MD investigations reveal that the H3 truncation results in a small inhibitor with a -1.5 kcal/mol tighter binding to RBD than original LCB1, while the best miniprotein with higher binding affinity involves D17R or E11V + D17R mutation. DFT calculations provide atomic-scale details on the role of hydrogen bonding and partial charge distribution in stabilizing the minibinder:RBD complex. This study provides insights into general principles for designing potential therapeutics for SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/chemistry , Small Molecule Libraries/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Substitution , Antiviral Agents/chemistry , Computational Biology , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Structure, Secondary , Virus Internalization
14.
Polymers (Basel) ; 13(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34641249

ABSTRACT

The structure and properties of the arginine-glycine-aspartate (RGD) sequence of the 1FUV peptide at 0 K and body temperature (310 K) are systematically investigated in a dry and aqueous environment using more accurate ab initio molecular dynamics and density functional theory calculations. The fundamental properties, such as electronic structure, interatomic bonding, partial charge distribution, and dielectric response function at 0 and 310 K are analyzed, comparing them in dry and solvated models. These accurate microscopic parameters determined from highly reliable quantum mechanical calculations are useful to define the range and strength of complex molecular interactions occurring between the RGD peptide and the integrin receptor. The in-depth bonding picture analyzed using a novel quantum mechanical metric, the total bond order (TBO), quantifies the role played by hydrogen bonds in the internal cohesion of the simulated structures. The TBO at 310 K decreases in the dry model but increases in the solvated model. These differences are small but extremely important in the context of conditions prevalent in the human body and relevant for health issues. Our results provide a new level of understanding of the structure and properties of the 1FUV peptide and help in advancing the study of RGD containing other peptides.

15.
Materials (Basel) ; 14(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34640170

ABSTRACT

The dielectric spectra of complex biomolecules reflect the molecular heterogeneity of the proteins and are particularly important for the calculations of electrostatic (Coulomb) and electrodynamic (van der Waals) interactions in protein physics. The dielectric response of the proteins can be decomposed into different components depending on the size, structure, composition, locality, and environment of the protein in general. We present a new robust simulation method anchored in rigorous ab initio quantum mechanical calculations of explicit atomistic models, without any indeterminate parameters to compute and gain insight into the dielectric spectra of small proteins under different conditions. We implement this methodology to a polypeptide RGD-4C (1FUV) in different environments, and the SD1 domain in the spike protein of SARS-COV-2. Two peaks at 5.2-5.7 eV and 14.4-15.2 eV in the dielectric absorption spectra are observed for 1FUV and SD1 in vacuum as well as in their solvated and salted models.

16.
ACS Omega ; 6(30): 19822-19835, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34368569

ABSTRACT

Molten lithium tetrafluoroberyllate (Li2BeF4) salt, also known as FLiBe, with a 2:1 mixture of LiF and BeF2 is being proposed as a coolant and solvent in advanced nuclear reactor designs, such as the molten salt reactor or the fluoride salt cooled high-temperature reactor. We present the results on the structure and properties of FLiBe over a wide range of temperatures, 0-2000 K, from high-throughput ab initio molecular dynamics simulation using a supercell model of 504 atoms. The variations in the local structures of solid and liquid FLiBe with temperature are discussed in terms of a pair distribution function, coordination number, and bond angle distribution. The temperature-dependent electronic structure and optical and mechanical properties of FLiBe are calculated. The optical and mechanical property results are reported for the first time. The results above and below the melting temperature (∼732 K) are compared with the experimental data and with data for crystalline FLiBe. The electronic structure and interatomic bonding results are discussed in correlation with the mechanical strength. A novel concept of total bond order density (TBOD), an important quantum mechanical parameter, is used to characterize the internal cohesion and strength in the simulated models. The results show a variation in the rate of change in properties in solid and liquid phases with anomalous behavior across the melting region. The observed trend is the decrease in mechanical strength, band gap, and TBOD in a nonlinear fashion as a function of temperature. The refractive index shows a surprising minimum at 850 K, among the tested temperatures, which lies above the melting point. These findings provide a new platform to understand the interplay between the temperature-dependent structures and properties of FLiBe salt.

17.
J Chem Inf Model ; 61(9): 4425-4441, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34428371

ABSTRACT

The spike protein of SARS-CoV-2 binds to the ACE2 receptor via its receptor-binding domain (RBD), with the RBD-ACE2 complex presenting an essential molecular target for vaccine development to stall the virus infection proliferation. The computational analyses at molecular, amino acid (AA), and atomic levels have been performed systematically to identify the key interacting AAs in the formation of the RBD-ACE2 complex for SARS-CoV and SARS-CoV-2 with its Alpha and Beta variants. Our study uses the molecular dynamics (MD) simulations with the molecular mechanics generalized Born surface area (MM-GBSA) method to predict the binding free energy (BFE) and to determine the actual interacting AAs, as well as two ab initio quantum chemical protocols based on the density functional theory (DFT) implementation. Based on MD results, Q493, Y505, Q498, N501, T500, N487, Y449, F486, K417, Y489, F456, Y495, and L455 have been identified as hotspots in SARS-CoV-2 RBD, while those in ACE2 are K353, K31, D30, D355, H34, D38, Q24, T27, Y83, Y41, and E35. RBD with Alpha and Beta variants has slightly different interacting AAs due to N501Y mutation. Both the electrostatic and hydrophobic interactions are the main driving force to form the AA-AA binding pairs. We confirm that Q493, Q498, N501, F486, K417, and F456 in RBD are the key residues responsible for the tight binding of SARS-CoV-2 with ACE2 compared to SARS-CoV. RBD with the Alpha variant binds with ACE2 stronger than the wild-type RBD or Beta. In the Beta variant, K417N reduces the binding, E484K slightly enhances it, and N501Y significantly increases it as in Alpha. The DFT results reveal that N487, Q493, Y449, T500, G496, G446, and G502 in RBD of SARS2 form pairs via specific hydrogen bonding with Q24, H34, E35, D38, Y41, Q42, and K353 in ACE2.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Density Functional Theory , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
18.
Sci Rep ; 11(1): 9921, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33972617

ABSTRACT

Chalcogenide semiconductors and glasses have many applications in the civil and military fields, especially in relation to their electronic, optical and mechanical properties for energy conversion and in enviormental materials. However, they are much less systemically studied and their fundamental physical properties for a large class chalcogenide semiconductors are rather scattered and incomplete. Here, we present a detailed study using well defined first-principles calculations on the electronic structure, interatomic bonding, optical, and mechanical properties for 99 bulk chalcogenides including thirteen of these crytals which have never been calculated. Due to their unique composition and structures, these 99 bulk chalcogenides are divided into two main groups. The first group contains 54 quaternary crystals with the structure composition (A2BCQ4) (A = Ag, Cu; B = Zn, Cd, Hg, Mg, Sr, Ba; C = Si, Ge, Sn; Q = S, Se, Te), while the second group contains scattered ternary and quaternary chalcogenide crystals with a more diverse composition (AxByCzQn) (A = Ag, Cu, Ba, Cs, Li, Tl, K, Lu, Sr; B = Zn, Cd, Hg, Al, Ga, In, P, As, La, Lu, Pb, Cu, Ag; C = Si, Ge, Sn, As, Sb, Bi, Zr, Hf, Ga, In; Q = S, Se, Te; [Formula: see text], 2, 3; [Formula: see text], 1, 2, 5; [Formula: see text], 1, 2 and [Formula: see text], 4, 5, 6, 9). Moreover, the total bond order density (TBOD) is used as a single quantum mechanical metric to characterize the internal cohesion of these crystals enabling us to correlate them with the calculated properties, especially their mechanical properties. This work provides a very large database for bulk chalcogenides crucial for the future theoretical and experimental studies, opening opportunities for study the properties and potential application of a wide variety of chalcogenides.

19.
Comput Struct Biotechnol J ; 19: 1288-1301, 2021.
Article in English | MEDLINE | ID: mdl-33623641

ABSTRACT

The COVID-19 pandemic poses a severe threat to human health with an unprecedented social and economic disruption. Spike (S) glycoprotein of the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the first contact with the ACE2 receptor in the human cell. We report results of ab initio computation of the spike protein, the largest ab initio quantum chemical computation to date on any bio-molecular system, using a divide and conquer strategy by focusing on individual structural domains. In this approach we divided the S-protein into seven structural domains: N-terminal domain (NTD), receptor binding domain (RBD), subdomain 1 (SD1), subdomain 2 (SD2), fusion peptide (FP), heptad repeat 1 with central helix (HR1-CH) and connector domain (CD). The entire Chain A has 14,488 atoms including the hydrogen atoms but excluding the amino acids with missing coordinates based on the PDB data (ID: 6VSB). The results include structural refinement, ab initio calculation of intra-molecular bonding mechanism, 3- dimensional non-local inter-amino acid interaction with implications for the inter-domain interaction. Details of the electronic structure, interatomic bonding, partial charge distribution and the role played by hydrogen bond network are discussed. In the interaction among structural domains, we present new insights for crucial hinge-like movement and fusion process. Extension of such calculation to the interface between the S-protein binding domain and ACE2 receptor can provide a pathway for computational understanding of mutations and the design of therapeutic drugs to combat the COVID-19 pandemic.

20.
J Phys Chem B ; 124(36): 7803-7818, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32786213

ABSTRACT

Doxorubicin (DOX) is a cancer drug that binds to dsDNA through intercalation. A comprehensive microsecond timescale molecular dynamics study is performed for DOX with 16 tetradecamer dsDNA sequences in explicit aqueous solvent, in order to investigate the intercalation process at both binding stages (conformational change and insertion binding stages). The molecular mechanics generalized Born surface area (MM-GBSA) method is adapted to quantify and break down the binding free energy (BFE) into its thermodynamic components, for a variety of different solution conditions as well as different DNA sequences. Our results show that the van der Waals interaction provides the largest contribution to the BFE at each stage of binding. The sequence selectivity depends mainly on the base pairs located downstream from the DOX intercalation site, with a preference for (AT)2 or (TA)2 driven by the favorable electrostatic and/or van der Waals interactions. Invoking the quartet sequence model proved to be most successful to predict the sequence selectivity. Our findings also indicate that the aqueous bathing solution (i.e., water and ions) opposes the formation of the DOX-DNA complex at every binding stage, thus implying that the complexation process preferably occurs at low ionic strength and is crucially dependent on solvent effects.


Subject(s)
DNA , Doxorubicin , Dissection , Ions , Solvents , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...