Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139475

ABSTRACT

Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.


Subject(s)
Cilia , Neurogenesis , Cell Differentiation , Cerebral Cortex , Cilia/physiology , Neurogenesis/physiology , Neurons
2.
Sci Adv ; 8(2): eabj4010, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35020425

ABSTRACT

The evolutionary expansion and folding of the mammalian cerebral cortex resulted from amplification of progenitor cells during embryonic development. This process was reversed in the rodent lineage after splitting from primates, leading to smaller and smooth brains. Genetic mechanisms underlying this secondary loss in rodent evolution remain unknown. We show that microRNA miR-3607 is expressed embryonically in the large cortex of primates and ferret, distant from the primate-rodent lineage, but not in mouse. Experimental expression of miR-3607 in embryonic mouse cortex led to increased Wnt/ß-catenin signaling, amplification of radial glia cells (RGCs), and expansion of the ventricular zone (VZ), via blocking the ß-catenin inhibitor APC (adenomatous polyposis coli). Accordingly, loss of endogenous miR-3607 in ferret reduced RGC proliferation, while overexpression in human cerebral organoids promoted VZ expansion. Our results identify a gene selected for secondary loss during mammalian evolution to limit RGC amplification and, potentially, cortex size in rodents.

3.
Bioessays ; 43(7): e2100073, 2021 07.
Article in English | MEDLINE | ID: mdl-33998002

ABSTRACT

The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Neuroectodermal Tumors, Primitive , Brain , Embryonic Development/genetics , Humans , MicroRNAs/genetics
4.
Nature ; 567(7746): 113-117, 2019 03.
Article in English | MEDLINE | ID: mdl-30787442

ABSTRACT

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Subject(s)
Centrosome/metabolism , DNA-Binding Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Microtubules/metabolism , Neurogenesis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Movement , Cells, Cultured , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Humans , Intercellular Junctions/metabolism , Interphase , Lateral Ventricles/anatomy & histology , Mammary Glands, Animal/cytology , Mice , Organ Size , Organoids/cytology
5.
Cerebellum ; 17(5): 685-691, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29663194

ABSTRACT

An inherent asymmetry exists between the two centrosomes of a dividing cell. One centrosome is structurally more mature (mother centrosome) than the other (daughter centrosome). Post division, one daughter cell inherits the mother centrosome while the other daughter cell inherits the daughter centrosome. Remarkably, the kind of centrosome inherited is associated with cell fate in several developmental contexts such as in radial glial progenitors in the developing mouse cortex, Drosophila neuroblast divisions and in Drosophila male germline stem cells. However, the role of centrosome inheritance in granule neuron progenitors in the developing cerebellum has not been investigated. Here, we show that mother and daughter centrosomes do exist in these progenitors, and the amount of pericentriolar material (PCM) each centrosome possesses is different. However, we failed to observe any correlation between the fate adopted by the daughter cell and the nature of centrosome it inherited.


Subject(s)
Centrosome/physiology , Cerebellum/growth & development , Neural Stem Cells/physiology , Neurons/physiology , Animals , Brain Stem/cytology , Brain Stem/growth & development , Brain Stem/metabolism , Cells, Cultured , Cerebellum/cytology , Cerebellum/metabolism , Heat-Shock Proteins/metabolism , Immunohistochemistry , Mesencephalon/cytology , Mesencephalon/growth & development , Mesencephalon/metabolism , Mice , Mitosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...