Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 653: 123904, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38355074

ABSTRACT

An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Humans , Hydrogels/pharmacology , Hyaluronic Acid/pharmacology , Secretome , Mesenchymal Stem Cells/metabolism , Heparin , Biocompatible Materials/metabolism , Cytokines/metabolism
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139100

ABSTRACT

Pancreatic cancer (PCa) is the fifth leading cause of cancer mortality. Recently, our group and others have demonstrated the oncolytic activity of the Zika virus (ZIKV) against glioblastoma. The peculiar features of this virus offer the opportunity to use an agent already tested in vivo through natural transmission, with minimal effects on adults, to specifically target a tumor such as glioblastoma. This remarkable specificity prompted us to explore the potential use of ZIKV oncolytic action against other tumor types. In particular, we focused on the subgroup of pancreatic tumors with a neuroendocrine origin known as neuroendocrine tumors (NETs). We found that ZIKV exerts its oncolytic activity by specifically infecting NET cells, leading to growth inhibition and cell death. We also assessed whether the oncolytic action could be extended to pancreatic tumors different from NETs. However, as expected, the viral specificity is limited to NETs and is not applicable to adenocarcinoma tumors, indicating a narrow spectrum of action for this virus. These findings support the potential use of ZIKV in therapeutic approaches not only in glioblastoma, but also against other tumors, such as neuroendocrine pancreatic tumors.


Subject(s)
Glioblastoma , Neuroendocrine Tumors , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Zika Virus Infection , Zika Virus , Adult , Humans , Zika Virus/physiology , Glioblastoma/therapy , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Pancreatic Hormones
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686355

ABSTRACT

Neural stem cells (NSCs) were described for the first time more than two decades ago for their ability to differentiate into all neural cell lineages. The isolation of NSCs from adults and embryos was carried out by various laboratories and in different species, from mice to humans. Similarly, no more than two decades ago, cancer stem cells were described. Cancer stem cells, previously identified in hematological malignancies, have now been isolated from several solid tumors (breast, brain, and gastrointestinal compartment). Though the origin of these cells is still unknown, there is a wide consensus about their role in tumor onset, propagation and, in particular, resistance to treatments. Normal and neoplastic neural stem cells share common characteristics, and can thus be considered as two sides of the same coin. This is particularly true in the case of the Zika virus (ZIKV), which has been described as an inhibitor of neural development by specifically targeting NSCs. This understanding prompted us and other groups to evaluate ZIKV action in glioblastoma stem cells (GSCs). The results indicate an oncolytic activity of this virus vs. GSCs, opening potentially new possibilities in glioblastoma treatment.


Subject(s)
Glioblastoma , Zika Virus Infection , Zika Virus , Adult , Humans , Animals , Mice , Glioblastoma/therapy , Neoplastic Stem Cells , Brain
4.
Biology (Basel) ; 12(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37626949

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) have emerged as a therapeutic tool in regenerative medicine. Recent studies have shown that exosome (EXO)-derived microRNAs (miRNAs) play a crucial role in mediating MSC functions. Additionally, intracellular miRNAs have been found to regulate MSC therapeutic capacities. However, the molecular mechanisms underlying miRNA-mediated MSC effects are not fully understood. We used 3D culture and IFN-γ to prime/enhance the MSC therapeutic effects in terms of functional miRNAs. After priming, our analysis revealed stable variations in intracellular miRNA among the MSC biological replicates. Conversely, a significant variability of miRNA was observed among EXOs released from biological replicates of the priming treatment. For each priming, we observed distinct miRNA expression profiles between the MSCs and their EXOs. Moreover, in both types of priming, gene ontology (GO) analysis of deregulated miRNAs highlighted their involvement in tissue repair/regeneration pathways. In particular, the 3D culture enhanced angiogenic properties in both MSCs and EXOs, while IFN-γ treatment enriched miRNAs associated with immunomodulatory pathways. These findings suggest that 3D culture and IFN-γ treatment are promising strategies for enhancing the therapeutic potential of MSCs by modulating miRNA expression. Additionally, the identified miRNAs may contribute to understanding the molecular mechanisms underlying the miRNA-mediated therapeutic effects of MSCs.

5.
Macromol Biosci ; 22(2): e2100290, 2022 02.
Article in English | MEDLINE | ID: mdl-34755459

ABSTRACT

An alkyl functionalized gellan gum derivative is here used to produce hydrogels containing hydroxyapatite and tricalcium phosphate nanoparticles as injectable nanostructured scaffolds for bone regeneration. The amphiphilic nature of the polysaccharide derivative along with its thermotropic behavior and ionotropic crosslinking features make possible to produce injectable bone mimetic scaffolds that can be used to release viable cells and osteoinductive biomolecules. The influence of different nanoparticles concentration on the rheological and physicochemical properties of the injectable systems is studied. It is found that the presence of inorganic nanoparticles reinforces the 3D hydrated polymeric networks without influencing their injectability but improving the physicochemical properties of ionotropic crosslinked hydrogels produced with two different curing media. Preliminary cytocompatibility tests performed with murine preosteoblast cells revealed that gellan gum based hydrogels can safely encapsulate viable cells. Loading and release experiments for dexamethasone and stromal cell-derived factor-1 demonstrate the drug delivery features of the obtained injectable systems.


Subject(s)
Hydrogels , Nanoparticles , Animals , Bone Regeneration , Calcium Phosphates , Durapatite/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Polysaccharides, Bacterial , Tissue Engineering
6.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681654

ABSTRACT

Glioblastoma (GBM) is the most aggressive among the neurological tumors. At present, no chemotherapy or radiotherapy regimen is associated with a positive long-term outcome. In the majority of cases, the tumor recurs within 32-36 weeks of initial treatment. The recent discovery that Zika virus (ZIKV) has an oncolytic action against GBM has brought hope for the development of new therapeutic approaches. ZIKV is an arbovirus of the Flaviviridae family, and its infection during development has been associated with central nervous system (CNS) malformations, including microcephaly, through the targeting of neural stem/progenitor cells (NSCs/NPCs). This finding has led various groups to evaluate ZIKV's effects against glioblastoma stem cells (GSCs), supposedly responsible for GBM onset, progression, and therapy resistance. While preliminary data support ZIKV tropism toward GSCs, a more accurate study of ZIKV mechanisms of action is fundamental in order to launch ZIKV-based clinical trials for GBM patients.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Oncolytic Virotherapy/methods , Zika Virus/genetics , Brain Neoplasms/pathology , Glioblastoma/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/virology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Zika Virus/physiology
7.
J Cell Mol Med ; 25(18): 8687-8700, 2021 09.
Article in English | MEDLINE | ID: mdl-34390171

ABSTRACT

In developed countries, cardiovascular diseases are currently the first cause of death. Cardiospheres (CSs) and cardiosphere-derived cells (CDCs) have been found to have the ability to regenerate the myocardium after myocardial infarction (MI). In recent years, much effort has been made to gain insight into the human heart repair mechanisms, in which miRNAs have been shown to play an important role. In this regard, to elucidate the involvement of miRNAs, we evaluated the miRNA expression profile across human heart biopsy, CSs and CDCs using microarray and next-generation sequencing (NGS) technologies. We identified several miRNAs more represented in the progenitors, where some of them can be responsible for the proliferation or the maintenance of an undifferentiated state, while others have been found to be downregulated in the undifferentiated progenitors compared with the biopsies. Moreover, we also found a correlation between downregulated miRNAs in CSs/CDCs and patient age (eg miR-490) and an inverse correlation among miRNAs upregulated in CSs/CDCs (eg miR-31).


Subject(s)
Aging/metabolism , Cardiovascular Diseases , MicroRNAs/metabolism , Stem Cell Transplantation/methods , Adult , Aged , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Cell Proliferation , Humans , Male , Middle Aged , Stem Cells , Young Adult
8.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360991

ABSTRACT

The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.


Subject(s)
Cellular Reprogramming Techniques/methods , Digestive System Diseases/therapy , Drug Discovery/methods , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Precision Medicine/methods , Animals , Cell Lineage , Digestive System Diseases/metabolism , Digestive System Diseases/pathology , Hepatocytes/metabolism , Humans , Tissue Engineering/methods
9.
World J Gastroenterol ; 27(17): 1905-1919, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34007129

ABSTRACT

Due to their immunomodulatory potential and release of trophic factors that promote healing, mesenchymal stromal cells (MSCs) are considered important players in tissue homeostasis and regeneration. MSCs have been widely used in clinical trials to treat multiple conditions associated with inflammation and tissue damage. Recent evidence suggests that most of the MSC therapeutic effects are derived from their secretome, including the extracellular vesicles, representing a promising approach in regenerative medicine application to treat organ failure as a result of inflammation/fibrosis. The recent outbreak of respiratory syndrome coronavirus, caused by the newly identified agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has forced scientists worldwide to use all available instruments to fight the infection, including the inflammatory cascade caused by this pandemic disease. The use of MSCs is a valid approach to combat organ inflammation in different compartments. In addition to the lungs, which are considered the main inflammatory target for this virus, other organs are compromised by the infection. In particular, the liver is involved in the inflammatory response to SARS-CoV-2 infection, which causes organ failure, leading to death in coronavirus disease 2019 (COVID-19) patients. We herein summarize the current implications derived from the use of MSCs and their soluble derivatives in COVID-19 treatment, and emphasize the potential of MSC-based therapy in this clinical setting.


Subject(s)
COVID-19 Drug Treatment , Liver Failure , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , SARS-CoV-2
10.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669517

ABSTRACT

Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton's jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs.


Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Wharton Jelly/cytology , Cell Movement , Cell Proliferation , Cell Separation , Fetus/cytology , Fluoresceins/metabolism , Gene Ontology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunophenotyping , MicroRNAs/genetics , Nanoparticles/chemistry , Reproducibility of Results , Skin/cytology , Succinimides/metabolism , Thrombospondin 1/metabolism , Umbilical Cord/cytology
11.
Int J Mol Sci ; 22(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419219

ABSTRACT

The clinical results of lung transplantation (LTx) are still less favorable than other solid organ transplants in both the early and long term. The fragility of the lungs limits the procurement rate and can favor the occurrence of ischemia-reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) with Steen SolutionTM (SS) aims to address problems, and the implementation of EVLP to alleviate the activation of IRI-mediated processes has been achieved using mesenchymal stromal/stem cell (MSC)-based treatments. In this study, we investigated the paracrine effects of human amnion-derived MSCs (hAMSCs) in an in vitro model of lung IRI that includes cold ischemia and normothermic EVLP. We found that SS enriched by a hAMSC-conditioned medium (hAMSC-CM) preserved the viability and delayed the apoptosis of alveolar epithelial cells (A549) through the downregulation of inflammatory factors and the upregulation of antiapoptotic factors. These effects were more evident using the CM of 3D hAMSC cultures, which contained an increased amount of immunosuppressive and growth factors compared to both 2D cultures and encapsulated-hAMSCs. To conclude, we demonstrated an in vitro model of lung IRI and provided evidence that a hAMSC-CM attenuated IRI effects by improving the efficacy of EVLP, leading to strategies for a potential implementation of this technique.


Subject(s)
Alveolar Epithelial Cells/drug effects , Cold Ischemia/methods , Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cells/drug effects , Reperfusion Injury/drug therapy , A549 Cells , Alveolar Epithelial Cells/metabolism , Amnion/cytology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Cytokines/genetics , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , NF-kappa B/genetics , Reperfusion Injury/physiopathology
12.
Front Oncol ; 11: 803278, 2021.
Article in English | MEDLINE | ID: mdl-35127513

ABSTRACT

Since its identification, HCV has been considered one of the main causes of hepatitis and liver cancer. Currently, the molecular mechanisms of HCC development induced by HCV infection have not been sufficiently clarified. The recent discovery of novel treatments that inhibit HCV replication gave rise to new questions concerning HCC mechanisms. In particular, the HCV eradication mediated by new direct-acting antiviral (DAAs) drugs does not exclude the possibility of de novo HCC development; this finding opened more questions on the interplay between liver cells and the virus. Different groups have investigated the pathways leading to cancer recurrence in patients treated with DAAs. For this reason, we tried to gain molecular insights into the changes induced by HCV infection in the target liver cells. In particular, we observed an increase in microRNA34a (miR34a) expression following HCV infection of HCC cell line Huh7.5. In addition, Huh7.5 treated with extracellular vesicles (EVs) from the previously HCV-infected Huh7.5 underwent apoptosis. Since miR34 expression was increased in Huh7.5 EVs, we hypothesized a paracrine mechanism of viral infection mediated by miR34a cargo of EVs. The balance between viral infection and cell transformation may raise some questions on the possible use of antiviral drugs in association with antineoplastic treatment.

13.
Stem Cells Int ; 2020: 8889379, 2020.
Article in English | MEDLINE | ID: mdl-32855639

ABSTRACT

The use of cell secreted factors in clinical settings could be an alternative to conventional cell therapy, with the advantage of limiting concerns generally associated with traditional cell transplantation, such as tumorigenicity, immunoreactivity, and carrying of infections. Based on our published data, we predict a potential role for extracellular vesicles (EVs) in contributing to the proangiogenic activity of human fetal dermal cell secretome. Depletion of nanosized EVs from secretome significantly impaired its ability to induce formation of mesh-like structures in vitro. The isolated EVs were characterized for size and concentration by nanoparticle tracking analysis, and for protein markers (Rab5+, Alix+, CD63+, and calnexin-). The microRNA profile of EVs revealed 87 microRNAs significantly upregulated (≥15-fold increase) in fetal compared to adult dermal cell-derived EVs. Interestingly, these upregulated microRNAs included microRNAs with a validated role in angiogenesis according to literature. Moreover, the DIANA-TarBase v7.0 analysis confirmed enrichment in the KEGG signaling pathways associated with angiogenesis and wound healing, with the identification of putative target genes including thrombospondin 1. To validate the in silico data, EVs were also characterized for total protein contents. When tested in in vitro angiogenesis, fetal dermal cell-derived EVs were more effective than their adult counterpart in inducing formation of complete mesh-like structures. Furthermore, treatment of fibroblasts with fetal dermal-derived EVs determined a 4-fold increase of thrombospondin 1 protein amounts compared with the untreated fibroblasts. Finally, visualization of CSFE-labeled EVs in the cytosol of target cells suggested a successful uptake of these particles at 4-8 hours of incubation. We conclude that EVs are important contributors of the proangiogenic effect of fetal dermal cell secretome. Hence, EVs could also serve as vehicle for a successful delivery of microRNAs or other molecules of therapeutic interest to target cells.

14.
Biomed Res Int ; 2020: 9847579, 2020.
Article in English | MEDLINE | ID: mdl-32309444

ABSTRACT

Mesenchymal stem cells (MSCs) and their secreted extracellular vesicles have been used effectively in different lung disease animal models and clinical trials. Their specific beneficial effects, the potential differences between MSCs derived from different organs, and interactions between MSC products and target cells still need to be studied further. Therefore, we investigated the effects of secreted products of human MSCs derived from the bone marrow and adipose tissue on human lung small airway epithelial (AE) cells in vitro. AE cells were cocultured with MSCs in inserts that allowed the free exchange of medium but did not allow direct cell-to-cell contact. We examined the effects on AE cell viability, proliferation, cell numbers, expression of AE cell-specific genes, and CD54 (intercellular adhesion molecule 1 (ICAM1)) surface positivity, as well as the secretion/uptake of growth factors relevant for AE cell. We found that coculture increased the viability of AE cells. The majority of AE cells expressed CD54 on their surface, but the percentage of cells being positive for CD54 did not increase in coculture. However, ICAM1 gene expression was increased in coculture. Also, we observed increased gene expression of mucin (MUC1), a lung-enriched cell surface glycoprotein. These observed effects were the same between bone marrow and adipose tissue MSCs. However, MSCs derived from adipose tissue reduced angiopoietin concentrations in coculture, whereas those from the bone marrow did not. Conclusively, MSCs influenced AE cells positively by increasing their viability and affecting gene expression, with some effects being specific for the tissue origin of MSCs.


Subject(s)
Coculture Techniques/methods , Epithelial Cells/cytology , Lung , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Animals , Aquaporin 5 , Bone Marrow Cells/cytology , Cells, Cultured , Disease Models, Animal , Gene Expression , Humans
15.
Biochem Biophys Res Commun ; 522(1): 171-176, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31757423

ABSTRACT

Different approaches have been studied in both preclinical and clinical settings to develop cell-based therapies and/or engineered cell-based therapies to better integrate grafts with the host. In these techniques, much attention is addressed to the use of adult stem cells such as mesenchymal stem cells (MSCs), but identifying and obtaining sufficient numbers of therapeutic cells, and the right route of administration, is often a challenge. In this study, we tested the feasibility of encapsulating human amnion-derived MSCs (hAMSCs) in a semipermeable and biocompatible fiber as a new approach for regenerative medicine. Our data showed that hAMSCs aggregated in the device constitutes an effective system for enhancing, or at least for maintaining, the paracrine activity of these cells in order to better promote tissue regeneration in an immune isolated state. In our new experimental approach, the hAMSCs retained their therapeutic potential, as shown by both the production of specific immunomodulatory/angiogenic factors and immunomodulatory and angiogenic ability observed in vitro. Unlike cell infusion methods, the use of encapsulated-cells leads to minimally invasive approaches, avoiding a direct interaction with the host. Therefore, the potentiality of an allograft or xenograft without the need for immunosuppression, and the lack of tumorigenesis is very intriguing.


Subject(s)
Amnion/cytology , Cell Culture Techniques/instrumentation , Mesenchymal Stem Cells/cytology , Placenta/cytology , Angiogenesis Inducing Agents/metabolism , Biocompatible Materials/chemistry , Cell Adhesion , Cell Aggregation , Cell Culture Techniques/methods , Cell Movement , Cell Survival , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Female , Human Umbilical Vein Endothelial Cells , Humans , Immunologic Factors/metabolism , Mesenchymal Stem Cells/metabolism , Pregnancy
16.
Differentiation ; 105: 14-26, 2019.
Article in English | MEDLINE | ID: mdl-30553176

ABSTRACT

We isolated a population of proliferating cells from cultured human fetal hepatocytes of 16-22 weeks gestational age. The cells shared a similar phenotype to that of mesenchymal stromal cells (MSCs) according to the International Society for Cellular Therapy (ISCT), including plastic adherence, antigen expression profile, and in vitro multilineage differentiation potential. Fetal liver (FL)-MSCs expressed the albumin gene, and harbored a subpopulation of CK18+ cells (20-40%), which defined their hepatic origin. However, when subjected to in vitro hepatic differentiation, FL-MSCs did not acquire significant liver functions. Quantitative analysis of conditioned medium (CM) collected from cultured cells revealed the presence of growth factors and chemokines with potential liver regenerative properties, the most relevant of which (concentration ≥3000 pg/ml) were SDF-1 alpha, IL-6, MCP-1, IL-8, MIP-1 beta, VEGF-A, Gro-alpha, and HGF. Culturing of FL-MSCs as spheroids significantly enhanced the secretion of HGF and bFGF (approximately 5-fold) compared with culture monolayers. Moreover, CM assessed in vitro induced capillary-like organization and migration of human umbilical vein endothelial cells (HUVECs) and fibroblasts as target cells. Interestingly, exosomes isolated from CM induced similar cellular responses in vitro with high efficiency and in a dose-dependent manner. FL-MSCs underwent several in vitro subcultivations, and did not stimulate allogenic T-cell proliferation thus suggesting a low immunogenicity. Furthermore, 5-year cryopreservation did not affect cell viability (approximately 90% of viable post-thawed FL-MSCs). These observations support the feasibility of a cell bank establishment for allogenic transplantation. We concluded that FL-MSCs or they secreted factors may be a valid alternative to hepatocyte transplantation in liver cell-based therapies.


Subject(s)
Human Embryonic Stem Cells/metabolism , Liver Regeneration , Liver/cytology , Mesenchymal Stem Cells/metabolism , Cells, Cultured , Chemokines/metabolism , Culture Media, Conditioned/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Liver/embryology , Spheroids, Cellular/drug effects
17.
J Tissue Eng Regen Med ; 12(2): e949-e961, 2018 02.
Article in English | MEDLINE | ID: mdl-28102936

ABSTRACT

Scarless wound healing and functional regeneration are typical processes of the fetus, gradually lost during postnatal life, and maximally attributed to fetal skin tissue and induced by fetal skin fibroblasts. The latter have been successfully applied to postnatal wounds, with clear advantages compared with autologous dermis grafts or adult fibroblast applications. Our goal was to functionally identify and uncover key factors and mechanisms through the analysis of secretomes, the principal players in all cell therapies based on mesenchymal stromal cells (MSCs). Cell secretomes also putatively mediate skin regenerative effects achieved in clinical applications of fetal skin fibroblasts. An innovative and unbiased approach of comparative and quantitative proteomics of cell conditioned media enabled us to gain knowledge of key molecules and processes from a translational perspective. Using banks of fetal and adult skin fibroblasts that we previously characterized as being MSCs, we discovered secretome changes by identification and comparative quantification, distinguishing secretome signatures of fetal skin MSCs putatively relevant for therapeutic microenvironment modulation. The uncovered proteins can trigger, directly and by modulation of extracellular matrix, angiogenesis, thus highlighting its key role towards scarless wound healing. The angiogenic trigger was functionally validated and corroborated in vitro, with fetal skin MSC secretomes stabilizing and inducing the formation of capillary-like networks by endothelial cells and fetal liver MSCs, respectively. Our approach and our results may aid in the development of cell-based and cell-free products for skin regeneration in acute or chronic injury, and also for wound healing in the regeneration of other tissues. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Adult Stem Cells/cytology , Cell Separation , Fetal Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Proteome/metabolism , Proteomics/methods , Skin/cytology , Adult , Adult Stem Cells/metabolism , Dermis/cytology , Fetal Stem Cells/metabolism , Gene Expression Regulation , Humans , Immunophenotyping , Mesenchymal Stem Cells/metabolism , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Wound Healing
18.
Biochem Biophys Res Commun ; 490(2): 472-479, 2017 08 19.
Article in English | MEDLINE | ID: mdl-28624456

ABSTRACT

Culturing fetal hepatocytes in high cell-density allowed stabilization of the hepatocyte phenotype up to 8 weeks, including the maintenance of liver-specific functions. On the other hand, when cultured at low cell-density, fetal hepatocytes underwent morphological modifications and acquired fibroblastic morphology. Since a switch from E-cadherin to vimentin expression accompanied these changes, we hypothesized the occurrence of epithelial-to-mesenchymal transition when fetal hepatocytes were cultured at low cell-density. Changes in gene expressionsuch as up-regulation of fibrosis-related geneswere also observed, suggesting that the low cell-density culture system promoted the acquisition of a profibrotic phenotype in cultured hepatocytes. The origin of fibrogenic cells in the liver is not well known, and the role of hepatocytes as a source of fibrogenic cells is controversial. Therefore, we hypothesized that hepatocytes undergoing epithelial-to-mesenchymal transition could have a central role in liver fibrosis as a source of fibrogenic cells. To conclude, the high cell-density culture system could be a useful model for in vitro studies requiring long-term cultures of hepatocytes, such as the development of pharmaceutical drugs and mechanisms of viral infections. The low cell-density culture system may provide additional insights into the origin of fibrogenic cells in the liver, thus contributing to the development of novel therapeutic approaches.


Subject(s)
Epithelial-Mesenchymal Transition , Hepatocytes/cytology , Hepatocytes/pathology , Liver Cirrhosis/pathology , Liver/pathology , Cell Count , Cell Culture Techniques/methods , Cells, Cultured , Humans , Liver/embryology
19.
Cell Transplant ; 24(6): 1139-53, 2015.
Article in English | MEDLINE | ID: mdl-24667036

ABSTRACT

This study was designed to assess liver-specific functions of human fetal liver cells proposed as a potential source for hepatocyte transplantation. Fetal liver cells were isolated from livers of different gestational ages (16-22 weeks), and the functions of cell preparations were evaluated by establishing primary cultures. We observed that 20- to 22-week-gestation fetal liver cell cultures contained a predominance of cells with hepatocytic traits that did not divide in vitro but were functionally competent. Fetal hepatocytes performed liver-specific functions at levels comparable to those of their adult counterpart. Moreover, exposure to dexamethasone in combination with oncostatin M promptly induced further maturation of the cells through the acquisition of additional functions (i.e., ability to store glycogen and uptake of indocyanine green). In some cases, particularly in cultures obtained from fetuses of earlier gestational ages (16-18 weeks gestation), cells with mature hepatocytic traits proved to be sporadic, and the primary cultures were mainly populated by clusters of proliferating cells. Consequently, the values of liver-specific functions detected in these cultures were low. We observed that a low cell density culture system rapidly prompted loss of the mature hepatocytic phenotype with downregulations of all the liver-specific functions. We found that human fetal liver cells can be cryopreserved without significant loss of viability and function and evaluated up to 1 year in storage in liquid nitrogen. They might, therefore, be suitable for cell banking and allow for the transplantation of large numbers of cells, thus improving clinical outcomes. Overall, our results indicate that fetal hepatocytes could be used as a cell source for hepatocyte transplantation. Fetal liver cells have been used so far to treat end-stage liver disease. Additional studies are needed to include these cells in cell-based therapies aimed to treat liver failure and inborn errors of metabolism.


Subject(s)
Fetus/cytology , Hepatocytes/cytology , Liver/cytology , Liver/embryology , Adult , Cell Count , Cell Differentiation/drug effects , Cell Separation , Cell Shape/drug effects , Cell Survival/drug effects , Cells, Cultured , Cryopreservation , Dexamethasone/pharmacology , Female , Gestational Age , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Immunophenotyping , Liver/drug effects , Oncostatin M/pharmacology , Organ Specificity/drug effects , Pregnancy , Suspensions
20.
Cell Transplant ; 23(10): 1169-85, 2014.
Article in English | MEDLINE | ID: mdl-23768775

ABSTRACT

We report that cells from human fetal dermis, termed here multipotent fetal dermal cells, can be isolated with high efficiency by using a nonenzymatic, cell outgrowth method. The resulting cell population was consistent with the definition of mesenchymal stromal cells by the International Society for Cellular Therapy. As multipotent fetal dermal cells proliferate extensively, with no loss of multilineage differentiation potential up to passage 25, they may be an ideal source for cell therapy to repair damaged tissues and organs. Multipotent fetal dermal cells were not recognized as targets by T lymphocytes in vitro, thus supporting their feasibility for allogenic transplantation. Moreover, the expansion protocol did not affect the normal phenotype and karyotype of cells. When compared with adult dermal cells, fetal cells displayed several advantages, including a greater cellular yield after isolation, the ability to proliferate longer, and the retention of differentiation potential. Interestingly, multipotent fetal dermal cells expressed the pluripotency marker SSEA4 (90.56 ± 3.15% fetal vs. 10.5 ± 8.5% adult) and coexpressed mesenchymal and epithelial markers (>80% CD90(+)/CK18(+) cells), coexpression lacking in the adult counterparts isolated under the same conditions. Multipotent fetal dermal cells were able to form capillary structures, as well as differentiate into a simple epithelium in vitro, indicating skin regeneration capabilities.


Subject(s)
Dermis/cytology , Fetal Stem Cells/cytology , Multipotent Stem Cells/cytology , Cell Differentiation/physiology , Dermis/embryology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...