Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1180941, 2023.
Article in English | MEDLINE | ID: mdl-37408776

ABSTRACT

Wheat productivity is severely affected by drought and heat stress conditions worldwide. Currently, stem reserve mobilization (SRM) is receiving increased attention as a trait that can sustain wheat yields under adverse environments. However, the significance of SRM in sustaining wheat yields under drought and heat stress conditions remains uncertain in the tropical climate of Indo-Gangetic Plain region. Therefore, this study aimed to investigate genotypic variations in SRM in wheat and their influence on yield sustainability under drought and heat stress environments. The experiment was designed in an alpha-lattice layout, accommodating 43 genotypes under four simulated environments [timely sown and well irrigated (non-stress); timely sown and water-deficit/drought stress; late-sown and well-irrigated crop facing terminally high temperature; and late-sown and water-deficit stress (both water-deficit and heat stress)]. The water-deficit stress significantly increased SRM (16%-68%, p < 0.01) compared to the non-stress environment, while the heat stress conditions reduced SRM (12%-18%). Both SRM and stem reserve mobilization efficiency exhibited positive correlations with grain weight (grain weight spike-1) under all three different stress treatments (p < 0.05). Strong positive correlations between stem weight (at 12 days after anthesis) and grain weight were observed across the environments (p < 0.001); however, a significant positive correlation between stem weight and SRM was observed only with stress treatments. Results revealed that the SRM trait could effectively alleviate the impacts of water-deficit stress on yields. However, the SRM-mediated yield protection was uncertain under heat stress and combined water-deficit and heat stress treatments, possibly due to sink inefficiencies caused by high temperature during the reproductive period. Defoliated plants exhibited higher SRM than non-defoliated plants, with the highest increment observed in the non-stress treatment compared to all the stress treatments. Results revealed that wider genetic variability exists for the SRM trait, which could be used to improve wheat yield under drought stress conditions.

2.
AoB Plants ; 72015 Mar 27.
Article in English | MEDLINE | ID: mdl-25818072

ABSTRACT

Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 74(2): 591-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19679508

ABSTRACT

A new Ru(III) Schiff base complexes of the type [RuX(EPh(3))L] (X = Cl/Br; E = P/As; L = dianion of the Schiff bases were derived by the condensation of 1,4-diformylbenzene with o-aminobenzoic acid/o-aminophenol/o-aminothiophenol in the 1:2 stoichiometric ratio) have been synthesized from the reactions of [RuX(3)(EPh(3))(3)] with appropriate Schiff base ligands in benzene in the 2:1 stoichiometric ratio. The new complexes have been characterized by analytical, spectral (IR, electronic, (1)H, (13)C NMR and ESR), magnetic moment and electrochemical studies. An octahedral structure has been tentatively proposed for all these new complexes. All the new complexes have been found to be better catalyst for the oxidation of alcohols using molecular oxygen as co-oxidant at ambient temperature and aryl-aryl coupling reactions. These complexes were also subjected to antibacterial activity studies against Escherichia coli, Aeromonas hydrophilla and Salmonella typhi.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Aeromonas hydrophila/drug effects , Anti-Bacterial Agents/chemical synthesis , Arsenicals/chemistry , Bromides/chemistry , Chlorides/chemistry , Electrochemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Organophosphorus Compounds/chemistry , Oxidation-Reduction/drug effects , Salmonella typhi/drug effects , Schiff Bases/chemical synthesis , Spectrum Analysis
4.
Genomics Proteomics Bioinformatics ; 7(4): 185-93, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20172491

ABSTRACT

Ascorbate peroxidase, a haem protein (EC 1.11.1.11), efficiently scavenges hydrogen peroxide (H(2)O(2)) in cytosol and chloroplasts of plants. In this study, a full-length coding sequence of thylakoid-bound ascorbate peroxidase cDNA (TatAPX) was cloned from a drought tolerant wheat cultivar C306. Homology modeling of the TatAPX protein was performed by using the template crystal structure of chloroplastic ascorbate peroxidase from tobacco plant (PDB: 1IYN). The model structure was further refined by molecular mechanics and dynamic methods using various tools such as PROCHECK, ProSA and Verify3D. The predicted model was then tested for docking with H(2)O(2), the substrate for TatAPX enzyme. The results revealed that Arg233 and Glu255 in the predicted active site of the enzyme are two important amino acid residues responsible for strong hydrogen bonding affinity with H(2)O(2), which might play an important role in scavenging of H(2)O(2) from the plant system.


Subject(s)
Computational Biology , Hydrogen Peroxide/metabolism , Models, Molecular , Peroxidases/chemistry , Peroxidases/metabolism , Triticum/enzymology , Ascorbate Peroxidases , Catalytic Domain , Chloroplasts/enzymology , Cloning, Molecular , DNA, Complementary/genetics , Droughts , Peroxidases/genetics , Phylogeny , Protein Conformation , Nicotiana/enzymology , Triticum/genetics
5.
Curr Top Microbiol Immunol ; 326: 235-55, 2008.
Article in English | MEDLINE | ID: mdl-18630756

ABSTRACT

Transduction of developmental and environmental cues into the nucleus to induce transcription and the export of RNAs to the cytoplasm through the nuclear pore complex (NPC) play pivotal roles in regulation of gene expression. The process of bulk export of mRNAs from nucleus to cytoplasm is highly conserved across eukaryotes. Assembly of export-competent mRNA ribonucleoprotein (mRNP) is coupled with both transcription and mRNA processing. The export-competent mRNP consists of mRNAs and a dozen nucleocytoplasmic shuttling nuclear proteins, including RNA export factors (Mex67-Mtr2 heterodimer, Npl3), poly(A)-binding proteins, DEAD-box protein 5 (Dbp5), and nucleoporins (NUPs) in yeast. Mobile NUPs help docking of mRNP to the NPC nuclear basket. A partially unfolded mRNP complex appears to be pulled through the NPC by using energy from Dbp5-catalyzed ATP hydrolysis. Dbp5 probably catalyzes the release of mRNA from mRNP in the cytoplasm. In contrast to bulk export of mRNAs by a Mex67-Mtr2/Npl3-dependent pathway, a specific subset of mRNA export under stress and export of microRNAs are mediated through the karyopherin (importin beta) family of proteins in a Ran-GTPase-dependent pathway. Our knowledge of mRNA export mechanisms in flowering plants is in its infancy. Some proteins of the NUP107-160 complex, NUPs and DEAD-box proteins (DBPs), have been studied in flowering plants. Arabidopsis NUP160/SAR1 plays a critical role in mRNA export, regulation of flowering, and hormone and abiotic stress responses, whereas NUP96/ SAR3/MOS3 is required for mRNA export to modulate hormonal and biotic stress responses. DEAD-box proteins have been implicated in mRNA export and abiotic stress response of yeast and higher plants. Arabidopsis DBP CRYOPHYTE/LOS4 plays an important role in mRNA export, abiotic stress response, germination, and plant development. Further studies on various components of nuclear mRNA export in plants during nonstress and stress conditions will be necessary to understand the link between mRNA export and stress-responsive gene expression.


Subject(s)
Plants/metabolism , RNA, Nuclear/metabolism , RNA, Plant/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Disasters , Nuclear Pore , Nucleocytoplasmic Transport Proteins , Plant Physiological Phenomena , RNA Transport , RNA, Messenger/metabolism , Salinity , Temperature
6.
Article in English | MEDLINE | ID: mdl-17182271

ABSTRACT

Complexes of the type [Ru(CO)(EPh(3))(B)(L)] (E = P or As; B = PPh(3), AsPh(3), py or pip; L=dianion of the Schiff bases derived from thiosemicarbazone with acetoacetanilide, acetoacet-o-toluidide and o-chloro acetoacetanilide) have been synthesized from the reactions of equimolar amounts of [RuHCl(CO)(EPh(3))(2)(B)] and Schiff bases in benzene. The new complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. The arrangement of PPh(3) groups around ruthenium metal was determined from (31)P NMR spectra. An octahedral structure has been assigned for all the new complexes. All the complexes exhibited catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in presence of N-methylmorpholine-N-oxide as co-oxidant. The complexes also exhibited antibacterial activity against E. coli, Aeromonas hydrophilla and Salmonella typhi. The activity was compared with standard streptomycin.


Subject(s)
Arsenic/chemistry , Nitrogen/analysis , Oxygen/analysis , Ruthenium/analysis , Sulfur/analysis , Aeromonas/metabolism , Anti-Infective Agents/pharmacology , Benzene/chemistry , Catalysis , Escherichia coli/metabolism , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests/methods , Oxygen/chemistry , Ruthenium/chemistry , Salmonella typhi/metabolism , Schiff Bases , Spectrophotometry/methods , Streptomycin/analysis , Thiosemicarbazones/chemistry
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 65(3-4): 678-83, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16546440

ABSTRACT

New hexa-coordinated ruthenium(III) complexes of the type [RuX(2)(EPh(3))(2)(L)] (E=P or As; X=Cl or Br; L=monobasic bidentate Schiff base derived from the condensation of benzhydrazide with furfuraldehyde, 2-acetylfuran and 2-acetylthiophene) have been synthesized from the equimolar amounts of [RuX(3)(EPh(3))(3)] or [RuBr(3)(PPh(3))(2)(MeOH)] and Schiff bases in benzene. The new complexes have been characterized by analytical, spectral (IR, electronic and EPR), magnetic moment, and cyclic voltammetry. An octahedral structure has been tentatively proposed. All the complexes have exhibited catalytic activity for the oxidation of benzyl alcohol, cyclohexanol and cinnamylalcohol in the presence of N-methylmorpholine-N-oxide as co-oxidant. All the new complexes were found to be active against the bacteria such as E. coli, Pseudomonas, Salmonella typhi and Staphylococcus aureus. The activity was compared with standard Streptomycin.


Subject(s)
Anti-Bacterial Agents/chemistry , Benzamides/chemistry , Furans/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Thiophenes/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Catalysis , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Spectrum Analysis
8.
Article in English | MEDLINE | ID: mdl-16330248

ABSTRACT

A series of new mixed ligand hexacoordinated ruthenium(III) Schiff base complexes of the type [RuX(2)(EPh(3))(2)(LL')] (X=Cl, E=P; X=Cl or Br, E=As and LL'=anion of the Schiff bases derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, 4-chloroaniline, 2-methyl aniline and 4-methoxy aniline) are reported. All the complexes have been characterized by analytical and spectral (IR, electronic and EPR) data. The redox behavior of the complexes has also been studied. The complexes exhibit catalytic activity in the oxidation of benzyl alcohol to benzaldehyde in the presence of N-methyl morpholine-N-oxide (NMO). An octahedral structure has been proposed for all of the complexes.


Subject(s)
Arsenicals/chemistry , Naphthalenes/chemistry , Nitrogen/chemistry , Organophosphorus Compounds/chemistry , Oxidation-Reduction , Oxygen/chemistry , Ruthenium/chemistry , Spectrophotometry/methods , Spectroscopy, Fourier Transform Infrared/methods , Alcohols/chemistry , Amines/chemistry , Catalysis , Electron Spin Resonance Spectroscopy , Ligands , Models, Chemical , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...