Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Molecules ; 29(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338370

ABSTRACT

The objective of this study was the optimization of the extraction process and the qualitative and quantitative determination of the bioactive metabolites: 12-O-methylcarnosic acid (12MCA), carnosic acid (CA), carnosol (CS), 7-O-methyl-epi-rosmanol (7MER) and rosmanol (RO) in infusions, decoctions, turbulent flow extracts, tinctures and oleolites from three Salvia species: Salvia officinalis L. (common sage, SO), Salvia fruticosa Mill. (Greek sage, SF) and Salvia rosmarinus Spenn (syn Rosmarinus officinalis L.) (rosemary, SR), using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (1H-qNMR). Regarding the aqueous extracts, decoctions appeared to be richer sources of the studied metabolites than infusions among the three plants. For SR, the turbulent flow extraction under heating was the most efficient one. The optimum time for the preparation of decoctions was found to be 5 min for SF and SO and 15 min for SR. It is noteworthy that SR tinctures were not stable in time due to decomposition of the abietane-type diterpenes CA and CS because of the polar solvent used for their preparation. Contrary to this finding, the oleolites of SR appeared to be very stable. Olive oil as a solvent for extraction was very protective for the contained abietane-type diterpenes. A preliminary stability study on the effect of the storage time of the SF on the abietane-type diterpenes content showed that the total quantity of abietanes decreased by 16.51% and 40.79% after 12 and 36 months, respectively. The results of this investigation also demonstrated that 1H-qNMR is very useful for the analysis of sensitive metabolites, like abietane-type diterpenes, that can be influenced by solvents used in chromatographic analysis.


Subject(s)
Diterpenes , Rosmarinus , Salvia , Abietanes/chemistry , Rosmarinus/chemistry , Salvia/chemistry , Greece , Plant Extracts/chemistry , Solvents , Diterpenes/analysis
2.
Plants (Basel) ; 13(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256831

ABSTRACT

This study focuses on the phytochemical analysis of the aerial parts of three Alkanna species: A. orientalis (L.) Boiss., A. tinctoria Tausch. and A. kotschyana A. DC. (Boraginaceae) growing wild in the Mediterranean basin, as mostly the roots of the genus have been widely researched. Their methanol extracts were subjected to qualitative LC-MS analyses, resulting in the annotation of 28 different secondary metabolites, with 27 originating from A. orientalis, 25 from A. tinctoria and 23 from A. kotschyana. The detected metabolites are categorized into three chemical types: organic acids (2), flavonoids and their glycosides (17), and caffeic acid derivatives (9). Furthermore, the chemical profiles of the three species are discussed chemotaxonomically. Caffeic acid and its derivatives, along with glucosides of quercetin and kaempferol, were identified in all three studied species. Additionally, their total phenolic and flavonoid contents were determined. The antioxidant capacity was evaluated through various chemical assays, as well as their in vitro enzyme inhibitory properties towards cholinesterases (AChE and BChE), α-amylase and α-glucosidase. The results showed that A. tinctoria exhibited the strongest antioxidant activity (211 mgTE/g extract in DPPH and 366 mgTE/g extract in ABTS), probably due to its high total phenolic (53.3 mgGAE/g extract) and flavonoid (20.8 mgRE/g extract) content, followed by A. kotschyana. These chemical and biological findings provide valuable insights for potential promising applications of the aerial parts of the species outside of the well-known uses of their roots.

3.
Phytother Res ; 38(1): 74-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37800192

ABSTRACT

Cannabidiol (CBD) is a multitarget agent possessing anti-inflammatory and antioxidant properties. Unlicensed CBD gained public favor for the care of general health and well-being as well as to get comfort from inflammatory complaints, pain, anxiety, mood, and sleep disorders. Safety profile of unlicensed CBD has been not sufficiently described. For this reason, suspected adverse reactions (SARs) to CBD unlicensed products were analyzed. Serious SARs to unlicensed CBD products in EudraVigilance, a system purchased by the European Medicines Agency, were analyzed for age, sex of the patient, adverse reactions, indication for use, and concomitant drugs. Serious SARs were 18.9% of all adverse events to unlicensed CBD; they were more frequent in men and adult people and, to a less extent, in children (3-11 years). About sex, in EudraVigilance serious Individual Cases Safety Reports of SARs to CBD in men are in the largest number (58.8%) with respect to women. Unlicensed CBD was used in the 38.8% of cases for treatment of epilepsy; more frequent adverse effects were: mental disorders, hepatic disorders, and aggravation of pre-existing epilepsy. Drugs or substances more frequently associated with SARs were the antiepileptics clobazam and valproic acid, followed by cannabis. Results suggest that precautions and appropriate surveillance of adverse effects should be taken when unlicensed CBD is used.


Subject(s)
Cannabidiol , Drug-Related Side Effects and Adverse Reactions , Epilepsy , Male , Child , Adult , Female , Humans , Cannabidiol/adverse effects , Pharmacovigilance , Anticonvulsants/adverse effects , Epilepsy/drug therapy , Valproic Acid/therapeutic use
4.
Foods ; 12(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37761215

ABSTRACT

Juniper (Juniperus L., Cupressaceae Bartlett) trees are of high commercial value, as their essential oils are widely applied in the food and cosmetic industries due to their bioactivities. The genus Juniperus comprises eight species in Greece, and in the current work, we report the chemical analyses of their volatiles (GC-MS) obtained from the leaves and cones of all indigenous species found in the country, as well as their antimicrobial properties. The studied species were J. oxycedrus L., J. excelsa M. Bieb., J. foetidissima Willd., J. communis L., J. macrocarpa Sibth. & Sm., J. turbinata Guss., J. sabina L. and J. drupacea Labill., and a total of 164 constituents were identified. Monoterpenes, followed by sesquiterpenes, appeared as the dominant compounds in all investigated species. Most of the studied essential oils belonged to the α-pinene chemotype, with amounts of α-cedrol, sabinene, limonene and myrcene among the abundant metabolites, except for J. sabina, which belonged to the sabinene chemotype. Through antimicrobial tests, it was observed that the essential oils of most of the cones showed better activity compared with the respective leaves. The essential oils of the cones of J. foetidissima, J. communis and J. turbinata showed the strongest activity against the tested microorganisms. Additionally, in these three species, the content of thujone, which is a toxic metabolite found in essential oils of many Juniperus species, was considerably low. Taking into consideration the chemical profile, safety and antimicrobial activity, these three Greek Juniperus species seemed to provide the most promising essential oils for further exploitation in the food and cosmetics industries.

5.
Foods ; 12(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37444361

ABSTRACT

In the last decades, Primula veris subsp. veris (roots and flowers) has been over harvested through legal and illegal ways in Greece, due to its extremely high commercial demand, as it is used in industry because of its well-known therapeutic properties. As ex situ cultures of the plant have been already developed, in the current comparative study, the herbal teas (infusions) from both flowers of cowslip growing wild in the Prespa Lake Park (NW Greece), and from ex situ propagated and cultivated plant material, have been investigated, with the ultimate goal of assessing them qualitatively. Furthermore, through classic phytochemical studies, the ten most abundant metabolites, belonging to the chemical categories of flavonol-glycosides and methoxy flavones, have been identified and structurally determined. The chemical profile of both infusions has been further analyzed through UHPLC-HRMS, showing that they show only light differences. The total phenolic content (TPC) of both studied samples (wild and ex situ cultivation), was determined by the Folin-Ciocalteau method, followed by an antioxidant activity assay though DPPH where, in both cases, wild plants exerted higher phenolic load and stronger antioxidative properties. According to the reported results, it could be proposed that the ex situ cultivated plant material could facilitate the mass production of plants and the sustainable cultivation of cowslip in the Greek mountains.

6.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375435

ABSTRACT

The in vitro cultures of Rindera graeca, a rare endemic plant, were developed as a sustainable source of phenolic acids. Various shoot and root cultures were established and scaled up in a sprinkle bioreactor. A multiplication rate of 7.2 shoots per explant was achieved. HPLC-PDA-ESI-HRMS analysis revealed the presence of rosmarinic acid (RA) and lithospermic acid B (LAB) as the main secondary metabolites in both the shoot and root cultures. The maximum RA (30.0 ± 3.2 mg/g DW) and LAB (49.3 ± 15.5 mg/g DW) yields were determined in root-regenerated shoots. The strongest free radical scavenging activity (87.4 ± 1.1%), according to 2,2-diphenyl-1-picrylhydrazyl-hydrate assay, was noted for roots cultivated in a DCR medium. The highest reducing power (2.3 µM ± 0.4 TE/g DW), determined by the ferric-reducing antioxidant power assay, was noted for shoots cultivated on an SH medium containing 0.5 mg/L 6-benzylaminopurine. A genetic analysis performed using random amplified polymorphic DNA and start codon targeted markers revealed genetic variation of 62.8% to 96.5% among the investigated shoots and roots. This variability reflects the capacity of cultivated shoots and roots to produce phenolic compounds.


Subject(s)
Boraginaceae , Boraginaceae/metabolism , Depsides/metabolism , Cinnamates/metabolism , Rosmarinic Acid
7.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902364

ABSTRACT

In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4'-O-ß-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3'-O-ß-d-glucoside, luteolin 3',4'-di-O-ß-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies' roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard.


Subject(s)
Antioxidants , Paeonia , Antioxidants/chemistry , Paeonia/chemistry , Monophenol Monooxygenase , Luteolin , Monoterpenes/analysis , Plant Extracts/chemistry , Phenols/analysis , Glycosides/chemistry , Phytochemicals/analysis , Seeds/chemistry
8.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770677

ABSTRACT

The aim of the present study was the phytochemical analysis of the aerial parts of Heliotropium procumbens Mill., a herb from Boraginaceae plant family not previously studied. The methanol (ME) and aqueous extracts (WE) of the aerial parts were assayed for their total phenolic and flavonoid content and antioxidant properties, using free radical scavenging (DPPH, ABTS), reducing power (FRAP, CUPRAC), phosphomolybdenum and metal chelating assays. The extracts displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 46.88 and 68.31 mg TE/g extract for ME, and 93.43 and 131.48 mg TE/g extract for WE, respectively. Key clinical enzymes involved in neurodegenerative diseases AChE and BChE, diabetes (α-amylase and α-glucosidase) and skin whitening (tyrosinase) were also assayed. The phytochemical profile of the studied species was determined through UHPLC-HRMS, whereby 26 secondary metabolites were identified, three of which (luteolin-7-glucoside, lithospermic and rosmarinic acids) were isolated and structurally determined by NMR spectral means. H. procubens was found to harbor bioactive metabolites and could, hence, serve as a source of biological activities which could be further explored and exploited for potential applications.


Subject(s)
Antioxidants , Heliotropium , Antioxidants/chemistry , Enzyme Inhibitors/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Phenols/chemistry , Methanol/chemistry , Phytochemicals , Free Radicals
9.
Molecules ; 27(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500292

ABSTRACT

Propolis is a bee-produced substance rich in bioactive compounds, which has been utilized widely in folk medicine, in food supplement and cosmetology areas because of its biological properties, (antibacterial, antiviral, antioxidant, anti-inflammatory, etc.). The subject of this study is associated with the chemical analysis and the biological evaluation of 16 propolis samples from the northeast Aegean region Greek islands, a well-recognized geographic area and the homeland of rich flora as a crossroads between Europe and Asia. Our study resulted in the detection of a significant percentage of diterpenes by gas chromatography-mass spectrometry (GC-MS), while flavonoids were identified in low percentages among studied samples. Furthermore, the DPPH assay highlighted that eight of the samples (Lesvos and Lemnos origin) demonstrated a promising antioxidant profile, further verified by their total phenolic content (TPC). Additionally, the propolis samples most rich in diterpenes showed significant antibacterial and fungicidal properties against human pathogenic microorganisms, proving them to be a very interesting and promising crude material for further applications, concluding that floral diversity is the most responsible for the bioactivity of the propolis samples.


Subject(s)
Anti-Infective Agents , Diterpenes , Propolis , Humans , Propolis/pharmacology , Propolis/chemistry , Antioxidants/chemistry , Gas Chromatography-Mass Spectrometry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Phenols/chemistry , Flavonoids/analysis , Diterpenes/analysis , Anti-Bacterial Agents/analysis
10.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296607

ABSTRACT

Propolis samples from a geographical part of northwest Greece (Prespa National Park, PNP), which is characterized as a plant endemism center and biodiversity hotspot, were characterized through pollen analysis, chemically analyzed, and biologically evaluated. The majority of the studied propolis showed typical chemical constituents (phenolic acids, flavonoids, and chalcones) of European type, while a sample of Mediterranean-type propolis (rich in diterpenes) was also identified. The palynological characterization was implemented to determine the botanical origin and to explain the chemical composition. The total phenolic content and the DPPH assay showed that the European-type propolis samples possessed strong antioxidant activity (86-91% inhibition at 200 µg/mL). Moreover, promising antibacterial activity of the extracts (MIC values 0.56-1.95 mg/mL) and moderate antifungal activity (MIC values 1.13-2.40 mg/mL) were noticed, while the sample with the highest activity had a significant content in terpenes (Mediterranean type). Propolis samples from the PNP area represent a rich source of antibacterial and antioxidant compounds and confirm the fact that propolis is a significant natural product with potential use for improving human health and stimulating the body's defense. Finally, it is noteworthy that a significant chemical diversity was demonstrated, even in samples from a limited geographical area as this of PNP.


Subject(s)
Chalcones , Diterpenes , Propolis , Humans , Propolis/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antifungal Agents/pharmacology , Parks, Recreational , Chalcones/analysis , Greece , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diterpenes/analysis , Terpenes/analysis
11.
Molecules ; 27(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458697

ABSTRACT

Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4',7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.


Subject(s)
Polychlorinated Dibenzodioxins , Rosmarinus , Skin Neoplasms , Animals , Cytochrome P-450 CYP1A1/metabolism , Guinea Pigs , Humans , Keratinocytes/metabolism , Ligands , Plant Extracts/metabolism , Plant Extracts/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Rosmarinus/metabolism , Skin Neoplasms/metabolism
12.
Pathogens ; 11(2)2022 01 31.
Article in English | MEDLINE | ID: mdl-35215134

ABSTRACT

There is a noticeable interest in alternative therapies where the outcome is the eradication of the Gram-negative bacterium, Helicobacter pylori (H. pylori), for the purpose of treating many stomach diseases (chronic gastritis and peptic ulcers) and preventing stomach cancer. It is especially urgent because the mentioned pathogen infects over 50% of the world's population. Recent studies have shown the potential of natural products, such as medicinal plant and bee products, on the inhibition of H. pylori growth. Propolis is such a bee product, with known antimicrobial activities. The main scope of the study is the determination of the antimicrobial activity of ethanolic extracts from 11 propolis samples (mostly from Poland, Ukraine, Kazakhstan, and Greece) against H. pylori, as well as selected bacterial and yeast species. The most effective against H. pylori was the propolis from Ukraine, with an MIC = 0.02 mg/mL while the rest of samples (except one) had an MIC = 0.03 mg/mL. Moreover, significant antimicrobial activity against Gram+ bacteria (with an MIC of 0.02-2.50 mg/mL) and three yeasts (with an MIC of 0.04-0.63 mg/mL) was also observed. A phytochemical analysis (polyphenolic profile) of the propolis samples, by ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC-DAD-MS), was performed. An evaluation of the impact of the propolis components on antimicrobial activity, consisting of statistical analyses (principal component analysis (PCA) and hierarchical fuzzy clustering), was then performed. It was observed that the chemical composition characteristics of the poplar propolis correlated with higher antibacterial activity, while that of the poplar and aspen propolis correlated with weaker antibacterial activity. To summarize the activity in vitro, all tested propolis samples indicate that they can be regarded as useful and potent factors in antimicrobial therapies, especially against H. pylori.

13.
Foods ; 11(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35159423

ABSTRACT

Mastic gum is a resinous sap produced by Pistacia lentiscus growing in the island of Chios (Greece) and has been recognized since Antiquity for its distinctive aroma as well as medical properties (antimicrobial, antioxidant, anti-inflammatory ones). The oral absorption of Chios Mastic gum (an insoluble polymer of poly-ß-myrcene is among the most abundant contents) is poor due to its low water-solubility. We report in this study, two different Chios mastic gum extracts, the acidic mastic gum extract-AMGE-and the neutral one-NMGE, both prepared after removal of the contained polymer in order to ameliorate solubility and enhance in vivo activity. Liposomes are presented as a promising delivery system due to their physicochemical and biophysical properties to increase stability and absorption efficiency of the mastic gum extracts within the gastrointestinal (GI) tract. The aim of this study was to evaluate the stability in GI simulated conditions together with cytotoxic and antimicrobial activity of the two extracts (AMGE and NMGE) after encapsulation in a well characterized liposome formulation. Liposomes-AMGE complex showed an improved stability behavior in GI simulated conditions. Both assayed extracts showed significant dose dependent inhibition against the growth of liver cancer HepG2 cells and an interesting antimicrobial activity against several microorganisms. Conclusively, encapsulation could be evaluated as a beneficial procedure for further applications of mastic resin.

14.
Foods ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34828945

ABSTRACT

Cynara cardunculus L. is a plant of the Mediterranean basin, known since antiquity as a food and for its therapeutic properties. The needs of the 21st century for the utilization of agricultural waste has led to the study of the seed oil of a Greek cultivar of Cynaracardunculus (GCCC) as potential nutritional oil, as large amounts of cardoon seeds are discarded. The sterol and fatty acid profile of cold-pressed seed oil was examined by gas chromatography-mass spectrometry GC-MS and compared with that of solvent extraction. Total phenolic content was determined and compared with well-known and widely appreciated edible vegetable oils; while, additionally, the total lignan content and nutritional value of cold-pressed oil revealed it as a potential dietary candidate. Furthermore, the seedcake (residue of cold-pressed oil extraction) has been studied exerting it as a good source of phenolics. Both GCCC oil and seedcake were tested for their antioxidant and enzyme inhibitory activities exhibiting higher activity compared to the sesame, flaxseed and extra virgin olive oils. According to the results, Cynara seed oil was shown to be a rich source of ω-6/-9 fatty acids and phenolics, highlighting, indicating that it could be a promising health-promoting vegetable oil, while the seedcake was revealed as a rich source of bioactive compounds.

15.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209863

ABSTRACT

The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2-5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds-isolated for the first time from A. ochraceopetaliformis-were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.


Subject(s)
Anti-Bacterial Agents , Aspergillus/metabolism , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Soil Microbiology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Aspergillus/isolation & purification
16.
Plants (Basel) ; 10(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919433

ABSTRACT

Rindera graeca is a rare endemic plant where in vitro culture has been used in order to investigate bioactive metabolites. Phytochemical study of the in vitro shoots and hairy roots led to the isolation of seven phenolic derivatives and the unusual furano-naphthoquinone rinderol. R. graeca was also analyzed for its pyrrolizidine alkaloids content by LC-MS, and it was found to contain echinatine together with echinatine and rinderine N-oxides. Rinderol, isolated only from in vitro hairy root culture for the first time in the genus, revealed promising bioactivities. It was evaluated in vitro against a panel of microorganisms, showing very strong activity specifically against Gram-positive bacteria (MIC values 0.98 × 10-2-1.18 µg/mL) as well as very interesting antiproliferative effect against the human non-small-cell bronchopulmonary carcinoma cell line NSCLC-N6-L16 and the epidermoid lung cancer cell line A549. These findings were compared with the chemical profile of the plant from nature, while this study is the first to report on the effects of R. graeca extracts obtained from in vitro culture, providing a valuable contribution to the scientific community towards this sustainable method of production of potential bioactive molecules.

17.
Planta Med ; 87(12-13): 1025-1031, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33902129

ABSTRACT

Cynara cardunculus (artichoke) is a perennial plant of the Mediterranean basin, known since antiquity as food and for its therapeutic properties. Cynara is a relatively small genus with two cultivated species and one wild one. Recently, successful efforts have been made to cultivate wild cardoon and monetise it as a bioenergy crop. In this study, the seeds of an established Greek cultivar of C. cardunculus, cultivated in the experimental field and used as biofuel, have been researched for their chemical profile and nutritional value. According to the results, six lignans were isolated [arctigenin, arctiin, trachelogenin, tracheloside, cynarinine, and ethylate of trachelogenin (isolated for the first time from a natural source)] as well as the most characteristic metabolites of the genus (linoleic acid, trilinolein, and 3,5-dicaffeoylquinic acid). Moreover, the total phenolic content (31.18 - 54.51 mg gallic acid equivalents/g extract) and antioxidant and enzyme inhibitory activities of the seeds have been evaluated and showed strong antioxidant properties (44.42 - 516.81 mg gallic acid equivalents/g extract) as well as satisfactory bleaching (enzyme tyrosinase, 16.95 - 23.80 mg kojic acid equivalents/g extract), antidiabetic (enzymes a-amylase, a-glucosidase, 0.14 - 1.75 mmol acarbose equivalents/g extract), and protective against neurodegenerative disease (cholinesterase enzymes, 0.49 - 1.22 mg galanthamine equivalents/g extract) activities. The nutritional evaluation of the seeds confirmed them as a rich source of unsaturated fatty acids, dietary fibre (24.1%), and high protein content (19.3%). It is noteworthy that such a neglected bioactive by-product, with essentially high nutritional value, as the studied seeds could be investigated for its value-added applications towards food and food supplements areas.


Subject(s)
Cynara scolymus , Cynara , Neurodegenerative Diseases , Greece , Seeds
18.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008479

ABSTRACT

Unique phytochemical profile of plants belonging to Boraginaceae family provides a prolific resource of lipophilic pigments from the group of naphthoquinone derivatives. To overcome low compound content, the major obstacle of plant-based production, immobilization of Rindera graeca roots in in vitro cultures was implemented for efficient production of rinderol, novel furanonaphthoquinone derivative with anticancer properties. Chromatographic procedures revealed rinderol presence in extracts of all investigated root lines, derived both from root biomass and post-culture medium. Unexpectedly, in the second stage of the experiment, rinderol production was ceased in control, unmodified culture systems. On the contrary, roots immobilized on PUF rafts uniformly and stably produced rinderol, and its highest amount was noted for transformed root lines after 42 days of cultivation (222.98 ± 10.47 µg/flask). PUF occurred to be the main place of compound accumulation. Moreover, investigation of rinderol biological activity revealed its fast-acting cell death induction in HeLa cervical cancer cells at relatively low concentrations. Presented results revealed successful application of R. graeca roots immobilization on PUF rafts for production and in situ product removal of rinderol, novel lipophilic furanonaphthoquinone with suggested proapoptotic activity.


Subject(s)
Apoptosis/drug effects , Boraginaceae/chemistry , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Plant Roots/chemistry , Polyurethanes/chemistry , Biomass , Cell Death/drug effects , Cell Line, Tumor , HeLa Cells , Humans , Phytochemicals/chemistry
19.
J Pharm Biomed Anal ; 194: 113814, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33308921

ABSTRACT

The present study aimed to investigate the metabolic profile, as well as the antioxidant and anti-ageing activities of twenty propolis samples from different regions of Greece. Chemical profiling of methanolic extracts was investigated using HPTLC and 1H-NMR techniques. Their antioxidant activity was evaluated by free radical scavenging methods (DPPH and ABTS), whereas anti-ageing properties were assessed as anti-collagenase activity. Extracts were also investigated in vitro for their ability to inhibit tyrosinase, which is responsible for the oxidation of L-DOPA to dopachrome and the production of melanin. The HPTLC and NMR analysis revealed high variability in the phytochemical profile of the methanolic extracts, with three major groups to be observed: a) Group I, consisting of samples rich in terpenoids, which present low antioxidant but high anti-tyrosinase activity, b) Group II, consisting of samples rich in flavonoids, which form a broad cluster with major similarities at the aromatic region and showed the highest anti-oxidant and anti-collagenase activities and c) Group III, consisting of samples with lower flavonoid content than the samples of Group II, which exhibited moderate antioxidant, anti-collagenase and anti-tyrosinase activities. In conclusion, this study has shown high differentiation on the chromatographic and spectroscopic metabolic profile of Greek propolis samples of different geographical origin, which is also reflected in their biological properties. Their important effects as antioxidant, anti-tyrosinase and anti-collagenase agents make propolis an important potent ingredient in the industry of food supplements and cosmeceuticals. Moreover, a correlation of a particular chemical propolis type to a specific type of biological activity will allow to prepare standardized extracts and develop food supplements and cosmeceuticals possessing the desired pharmacological properties.


Subject(s)
Propolis , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/analysis , Greece , Phytochemicals
20.
Molecules ; 25(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784926

ABSTRACT

Rindera graeca is a Greek endemic plant of the Boraginaceae family which has never been studied before. Consequently, this study attempted to phytochemically examine the aerial parts of this species. Nine phenolic secondary metabolites were identified, consisting of seven caffeic acid derivatives and two flavonol glucosides, namely rutin and quercetin-3-rutinoside-7-rhamnoside. These flavonoids, together with rosmarinic acid, were isolated via column chromatography and structurally determined through spectral analysis. Quercetin-3-rutinoside-7-rhamnoside is an unusual triglycoside, which is identified for the first time in Rindera genus and among Boraginaceae plants. This metabolite was further examined with thermal analysis and its 3D structure was simulated, revealing some intriguing information on its interaction with biological membrane models, which might have potential applications in microcirculation-related conditions. R. graeca was also analyzed for its pyrrolizidine alkaloids content, and it was found to contain echinatine together with echinatine N-oxide and rinderine N-oxide. Additionally, the total phenolic and flavonoid contents of R. graeca methanol extract were determined, along with free radical inhibition assays. High total phenolic content and almost complete inhibition at experimental doses at the free radical assays indicate a potent antioxidant profile for this plant. Overall, through phytochemical analysis and biological activity assays, insight was gained on an endemic Greek species of the little-studied Rindera genus, while its potential for further applications has been assessed.


Subject(s)
Antioxidants/pharmacology , Boraginaceae/chemistry , Flavonoids/analysis , Phytochemicals/analysis , Plant Extracts/analysis , Pyrrolizidine Alkaloids/analysis , Cinnamates/analysis , Depsides/analysis , Phenols/analysis , Plant Leaves/chemistry , Quercetin/analogs & derivatives , Quercetin/analysis , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...