Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 51(6): 738-49, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24874429

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a female-predominant cystic lung disease that can lead to respiratory failure. LAM cells typically have inactivating tuberous sclerosis complex 2 (TSC2) mutations and mammalian target of rapamycin (mTOR) complex (mTORC) 1 activation. Clinical response to the mTORC1 inhibitors has been limited, prompting a search for additional therapy for LAM. In this study, we investigated the impact of TSC2 on the expression of poly (ADP-ribose) polymerase (PARP)-1 that initiates the DNA repair pathway, and tested the efficacy of PARP1 inhibitors in the survival of TSC2-deficient (TSC2(-)) cells. We analyzed publicly available expression arrays of TSC2(-) cells and validated the findings using real-time RT-PCR, immunoblotting, and immunohistochemistry. We examined the impact of rapamycin and Torin 1 on PARP1 expression. We also tested the effect of PARP1 inhibitors, 8-hydroxy-2-methylquinazoline-4-one and 3,4-dihydro-5[4-(1-piperindinyl)butoxy]-1(2H)-isoquinoline, on the survival of TSC2(-) cells. We identified the up-regulation of PARP1 in TSC2(-) cells relative to cells in which wild-type TSC2 has been reintroduced (TSC2-addback [TSC2(+)] cells). The transcript levels of PARP1 in TSC2(-) cells were not affected by rapamycin. PARP1 levels were increased in TSC2(-) cells, xenograft tumors of rat-derived TSC2(-) cells, renal cystadenomas from Tsc2(+/-) mice, and human LAM nodules. RNA interference of mTOR failed to reduce PARP1 levels. Proliferation and survival of TSC2(-) cells was reduced in response to PARP1 inhibitor treatment, more so than TSC2(+) cells. TSC2(-) cells exhibit higher levels of PARP1 relative to TSC2(+) cells in an mTOR-insensitive manner. PARP1 inhibitors selectively suppress the growth and induce apoptosis of TSC2(-) cells from patients with LAM. Targeting PARP1 may be beneficial in the treatment of LAM and other neoplasm with mTORC1 activation.


Subject(s)
Lung Neoplasms/enzymology , Lymphangioleiomyomatosis/enzymology , Poly(ADP-ribose) Polymerases/metabolism , Quinazolines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line , DNA Repair , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Enzymologic , Humans , Isoquinolines/pharmacology , Lung Neoplasms/drug therapy , Lymphangioleiomyomatosis/drug therapy , Mice, Inbred C57BL , Mice, SCID , Molecular Targeted Therapy , Phthalazines/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Rats , Sirolimus/pharmacology , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Up-Regulation , Xenograft Model Antitumor Assays
2.
PLoS One ; 5(12): e14399, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21200439

ABSTRACT

BACKGROUND: mTORC1 (mammalian target of rapamycin complex 1) activation has been demonstrated in response to endotoxin challenge, but the mechanism and significance are unclear. We investigated the effect of mTORC1 suppression in an animal model of endotoxemia and in a cellular model of endotoxin signaling. METHODOLOGY/PRINCIPAL FINDINGS: Mice were treated with the mTORC1 inhibitor rapamycin or vehicle prior to lethal endotoxin challenge. Mortality and cytokine levels were assessed. Cultured macrophage-like cells were challenged with endotoxin with or without inhibitors of various pathways known to be upstream of mTORC1. Activated pathways, including downstream S6K pathway, were assessed by immunoblots. We found that mTORC1-S6K suppression by rapamycin delayed mortality of mice challenged with lethal endotoxin, and was associated with dampened circulating levels of VEGF, IL-1ß, IFN-γ and IL-5. Furthermore, in vitro cellular studies demonstrated that LPS (lipopolysaccharide) activation of mTORC1-S6K still occurs in the presence of PI3K-Akt inhibition alone, but can be suppressed by concurrent inhibition of PI3K-Akt and MEK-ERK pathways. CONCLUSIONS/SIGNIFICANCE: We conclude that cellular activation of mTORC1-S6K contributes to cytokine up-regulation and mortality in response to endotoxin, and may occur via multiple pathways.


Subject(s)
Cytokines/metabolism , Endotoxemia/metabolism , Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Up-Regulation , Animals , Endotoxins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Lipopolysaccharides/metabolism , MAP Kinase Kinase 1/metabolism , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Mutation , Phosphorylation , Signal Transduction , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL