Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 935804, 2022.
Article in English | MEDLINE | ID: mdl-35910348

ABSTRACT

Ectopic calcification (EC) of myofibers is a pathological feature of muscle damage in Duchenne muscular dystrophy (DMD). Mineralisation of muscle tissue occurs concomitantly with macrophage infiltration, suggesting a link between ectopic mineral deposition and inflammation. One potential link is the P2X7 purinoceptor, a key trigger of inflammation, which is expressed on macrophages but also up-regulated in dystrophic muscle cells. To investigate the role of P2X7 in dystrophic calcification, we utilised the Dmd mdx-ßgeo dystrophin-null mouse model of DMD crossed with a global P2X7 knockout (P2rx7 -/- ) or with our novel P2X7 knockin-knockout mouse (P2x7 KiKo ), which expresses P2X7 in macrophages but not muscle cells. Total loss of P2X7 increased EC, indicating that P2X7 overexpression is a protective mechanism against dystrophic mineralisation. Given that muscle-specific P2X7 ablation did not affect dystrophic EC, this underlined the role of P2X7 receptor expression on the inflammatory cells. Serum phosphate reflected dystrophic calcification, with the highest serum phosphate levels found in genotypes with the most ectopic mineral. To further investigate the underlying mechanisms, we measured phosphate release from cells in vitro, and found that dystrophic myoblasts released less phosphate than non-dystrophic cells. Treatment with P2X7 antagonists increased phosphate release from both dystrophic and control myoblasts indicating that muscle cells are a potential source of secreted phosphate while macrophages protect against ectopic mineralisation. Treatment of cells with high phosphate media engendered mineral deposition, which was decreased in the presence of the P2X7 agonist BzATP, particularly in cultures of dystrophic cells, further supporting a protective role for P2X7 against ectopic mineralisation in dystrophic muscle.

2.
Am J Pathol ; 190(1): 190-205, 2020 01.
Article in English | MEDLINE | ID: mdl-31726040

ABSTRACT

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men because of progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest human gene. Although there is evidence for the loss of shorter isoforms having impact in the central nervous system, their role in muscle is unclear. We found that at 8 weeks, the active phase of pathology in dystrophic mice, dystrophin-null mice (mdxßgeo) presented with a mildly exacerbated phenotype but without an earlier onset, increased serum creatine kinase levels, or decreased muscle strength. However, at 12 months, mdxßgeo diaphragm strength was lower, whereas fibrosis increased, compared with mdx. The most striking features of the dystrophin-null phenotype were increased ectopic myofiber calcification and altered macrophage infiltration patterns, particularly the close association of macrophages with calcified fibers. Ectopic calcification had the same temporal pattern of presentation and resolution in mdxßgeo and mdx muscles, despite significant intensity differences across muscle groups. Comparison of the rare dystrophin-null patients against those with mutations affecting full-length dystrophins may provide mechanistic insights for developing more effective treatments for DMD.


Subject(s)
Calcinosis/pathology , Dystrophin/metabolism , Fibrosis/pathology , Macrophages/immunology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Vascular Calcification/pathology , Animals , Calcinosis/immunology , Calcinosis/metabolism , Dystrophin/genetics , Fibrosis/immunology , Fibrosis/metabolism , Inflammation , Macrophages/metabolism , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/metabolism , Vascular Calcification/immunology , Vascular Calcification/metabolism
3.
Acta Neuropathol Commun ; 6(1): 27, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29642926

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMDmdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMDmdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-muscle abnormalities.


Subject(s)
Antimetabolites/therapeutic use , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/therapy , Receptors, Purinergic P2X7/metabolism , Zidovudine/therapeutic use , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Calcium/metabolism , Cells, Cultured , Collagen Type IV/metabolism , Creatine Kinase/blood , Disease Models, Animal , Male , Mice , Mice, Inbred mdx , Mice, Transgenic , Models, Molecular , Muscle Strength/drug effects , Muscles/drug effects , Muscles/metabolism , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/genetics , Myoblasts/drug effects
4.
J Mol Cell Biol ; 10(3): 229-242, 2018 06 01.
Article in English | MEDLINE | ID: mdl-28992079

ABSTRACT

P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained activation of P2X7 triggers release of active matrix metalloproteinase 2 (MMP-2), which halts ion channel and LP responses via the MMP-2-dependent receptor cleavage. This mechanism operates in cells as diverse as macrophages, dystrophic myoblasts, P2X7-transfected HEK293, and human tumour cells. Given that serum-born MMP-2 activity also blocked receptor functions, P2X7 responses in vivo may decrease in organs with permeable capillaries. Therefore, this mechanism represents an important fine-tuning of P2X7 functions, reliant on both cell-autonomous and extraneous factors. Indeed, it allowed evasion from the ATP-induced cytotoxicity in macrophages and human cancer cells with high P2X7 expression levels. Finally, we demonstrate that P2X7 ablation eliminated gelatinase activity in inflamed dystrophic muscles in vivo. Thus, P2X7 antagonists could be used as an alternative to highly toxic MMP inhibitors in treatments of inflammatory diseases and cancers.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Dystroglycans/metabolism , HEK293 Cells , Humans , Hyaluronan Receptors/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Myoblasts/metabolism , Neoplasms/metabolism , Proteolysis , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...