Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240701

ABSTRACT

BACKGROUND: The use of dressings is an essential component of the standard of care for diabetic foot ulcers (DFUs); however, despite the wide variety of dressings available, there is a lack of evidence from head-to-head randomized controlled trials. We evaluated the efficacy and safety of Triticum vulgare extract and polyhexanide (Fitostimoline® hydrogel/Fitostimoline® Plus gauze) versus saline gauze dressings in patients with DFUs. METHODS: This study involved a monocentric, two-arm, open-label, controlled trial in patients with DFUs (Grades I or II, Stage A or C, based on the Texas classification) randomized to 12 weeks of dressing with Fitostimoline® hydrogel/Fitostimoline® Plus gauze or saline gauze. The number of patients with complete healing, the reduction in DFU size, and the presence of local signs and symptoms of the wound and perilesional skin were evaluated every two weeks and at the end of treatment. RESULTS: A total of 40 adult patients were recruited (20 patients in each treatment group). The proportion of patients with complete healing was similar between the two groups (61% vs. 74%, p = 0.495, Fitostimoline® hydrogel/Fitostimoline® Plus gauze vs. saline gauze, respectively), without significant differences, as well as the reduction in DFU size. A significant improvement in local signs and symptoms of the wound and signs of perilesional skin in the Fitostimoline® hydrogel/Fitostimoline® Plus gauze compared with the saline gauze group was observed. CONCLUSIONS: In a clinical setting, the use of Fitostimoline® hydrogel/Fitostimoline® Plus gauze dressing in patients with DFUs significantly improves signs and symptoms of the wound and signs of perilesional skin compared with saline gauze dressing with a similar efficacy in terms of wound healing.

2.
Nutrients ; 15(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36986167

ABSTRACT

Chronotype is a reflection of an individual's preference for sleeping, eating and activity times over a 24 h period. Based on these circadian preferences, three chronotype categories have been identified: morning (MC) (lark), intermediate (IC) and evening (EC) (owl). Chronotype categories have been reported to influence dietary habits; subjects with EC are more prone to follow unhealthy diets. In order to better characterize the eating habits of subjects with obesity belonging to three different chronotype categories, we investigated eating speed during the three main meals in a population of subjects with overweight/obesity. For this purpose, we included 81 subjects with overweight/obesity (aged 46.38 ± 16.62 years; BMI 31.48 ± 7.30 kg/m2) in a cross-sectional, observational study. Anthropometric parameters and lifestyle habits were studied. Chronotype score was assessed using the Morningness-Eveningness questionnaire (based on their scores, subjects were categorized as MC, IC or EC). To investigate the duration of main meals, a dietary interview by a qualified nutritionist was conducted. Subjects with MC spend significantly more time on lunch than subjects with EC (p = 0.017) and significantly more time on dinner than subjects with IC (p = 0.041). Furthermore, the chronotype score correlated positively with the minutes spent at lunch (p = 0.001) and dinner (p = 0.055, trend toward statistical significance). EC had a fast eating speed and this, in addition to better characterizing the eating habits of this chronotype category, could also contribute to the risk of developing obesity-related cardiometabolic diseases.


Subject(s)
Circadian Rhythm , Overweight , Humans , Cross-Sectional Studies , Feeding Behavior , Obesity/epidemiology , Sleep , Surveys and Questionnaires
3.
Sensors (Basel) ; 20(11)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486394

ABSTRACT

Proximal sensors in controlled environment agriculture (CEA) are used to monitor plant growth, yield, and water consumption with non-destructive technologies. Rapid and continuous monitoring of environmental and crop parameters may be used to develop mathematical models to predict crop response to microclimatic changes. Here, we applied the energy cascade model (MEC) on green- and red-leaf butterhead lettuce (Lactuca sativa L. var. capitata). We tooled up the model to describe the changing leaf functional efficiency during the growing period. We validated the model on an independent dataset with two different vapor pressure deficit (VPD) levels, corresponding to nominal (low VPD) and off-nominal (high VPD) conditions. Under low VPD, the modified model accurately predicted the transpiration rate (RMSE = 0.10 Lm-2), edible biomass (RMSE = 6.87 g m-2), net-photosynthesis (rBIAS = 34%), and stomatal conductance (rBIAS = 39%). Under high VPD, the model overestimated photosynthesis and stomatal conductance (rBIAS = 76-68%). This inconsistency is likely due to the empirical nature of the original model, which was designed for nominal conditions. Here, applications of the modified model are discussed, and possible improvements are suggested based on plant morpho-physiological changes occurring in sub-optimal scenarios.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Models, Theoretical , Vapor Pressure , Water , Environment, Controlled , Lactuca/growth & development , Microclimate
4.
Sensors (Basel) ; 20(12)2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32575804

ABSTRACT

This Special Issue is focused on recent advances in integrated monitoring and modelling technologies for agriculture and forestry. The selected contributions cover a wide range of topics, including wireless field sensing systems, satellite and UAV remote sensing, ICT and IoT applications for smart farming.


Subject(s)
Agriculture , Forestry , Remote Sensing Technology , Aircraft , Satellite Imagery
5.
Sensors (Basel) ; 20(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32245028

ABSTRACT

Water use efficiency in agriculture can be improved by implementing advisory systems that support on-farm irrigation scheduling, with reliable forecasts of the actual crop water requirements, where crop evapotranspiration (ETc) is the main component. The development of such advisory systems is highly dependent upon the availability of timely updated crop canopy parameters and weather forecasts several days in advance, at low operational costs. This study presents a methodology for forecasting ETc, based on crop parameters retrieved from multispectral images, data from ground weather sensors, and air temperature forecasts. Crop multispectral images are freely provided by recent satellite missions, with high spatial and temporal resolutions. Meteorological services broadcast air temperature forecasts with lead times of several days, at no subscription costs, and with high accuracy. The performance of the proposed methodology was applied at 18 sites of the Campania region in Italy, by exploiting the data of intensive field campaigns in the years 2014-2015. ETc measurements were forecast with a median bias of 0.2 mm, and a median root mean square error (RMSE) of 0.75 mm at the first day of forecast. At the 5th day of accumulated forecast, the median bias and RMSE become 1 mm and 2.75 mm, respectively. The forecast performances were proved to be as accurate and as precise as those provided with a complete set of forecasted weather variables.

6.
Nature ; 573(7772): 108-111, 2019 09.
Article in English | MEDLINE | ID: mdl-31462777

ABSTRACT

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Subject(s)
Climate Change/statistics & numerical data , Floods/statistics & numerical data , Rivers , Climate Change/history , Europe , Floods/history , Floods/prevention & control , Geographic Mapping , History, 20th Century , History, 21st Century , Rain , Seasons , Time Factors
7.
Science ; 357(6351): 588-590, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28798129

ABSTRACT

A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.

8.
PLoS One ; 10(4): e0123128, 2015.
Article in English | MEDLINE | ID: mdl-25835015

ABSTRACT

Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv.) DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy). Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years), has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can limit the spread and impacts of this species.


Subject(s)
Ecological and Environmental Phenomena , Genista/metabolism , Introduced Species , Nitrogen Fixation/physiology , Soil/chemistry , Climate , Ecosystem , Floods , Italy , Mediterranean Region , Microclimate , Seasons , Soil/classification , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...