Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(1): e0279643, 2023.
Article in English | MEDLINE | ID: mdl-36649289

ABSTRACT

The COVID-19 pandemic has caused tremendous disruptions to non-COVID-19 clinical research. However, there has been little investigation on how patients themselves have responded to clinical trial recruitment during the COVID-19 pandemic. To investigate the effect of the COVID-19 pandemic on rates of patient consent to enrollment into non-COVID-19 clinical trials, we carried out a cross-sectional study using data from the Nitric Oxide/Acute Kidney Injury (NO/AKI) and Minimizing ICU Neurological Dysfunction with Dexmedetomidine-Induced Sleep (MINDDS) trials. All patients eligible for the NO/AKI or MINDDS trials who came to the hospital for cardiac surgery and were approached to gain consent to enrollment were included in the current study. We defined "Before COVID-19" as the time between the start of the relevant clinical trial and the date when efforts toward that clinical trial were deescalated by the hospital due to COVID-19. We defined "During COVID-19" as the time between trial de-escalation and trial completion. 5,015 patients were screened for eligibility. 3,851 were excluded, and 1,434 were approached to gain consent to enrollment. The rate of consent to enrollment was 64% in the "Before COVID-19" group and 45% in the "During COVID-19" group (n = 1,334, P<0.001) (RR = 0.70, 95% CI 0.62 to 0.80, P<0.001). Thus, we found that rates of consent to enrollment into the NO/AKI and MINDDS trials dropped significantly with the onset of the COVID-19 pandemic. Patient demographic and socioeconomic status data collected from electronic medical records and patient survey data did not shed light on possible explanations for this observed drop, indicating that there were likely other factors at play that were not directly measured in the current study. Increased patient hesitancy to enroll in clinical trials can have detrimental effects on clinical science, patient health, and patient healthcare experience, so understanding and addressing this issue during the COVID-19 pandemic is crucial.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Cross-Sectional Studies , Patients , Time Factors
2.
Clin Nutr ; 41(12): 3069-3076, 2022 12.
Article in English | MEDLINE | ID: mdl-33934924

ABSTRACT

BACKGROUND & AIMS: Early reports suggest significant difficulty with enteral feeding in critically ill COVID-19 patients. This study aimed to characterize the prevalence, clinical manifestations, and outcomes of feeding intolerance in critically ill patients with COVID-19. METHODS: We examined 323 adult patients with COVID-19 admitted to the intensive care units (ICUs) of Massachusetts General Hospital between March 11 and June 28, 2020 who received enteral nutrition. Systematic chart review determined prevalence, clinical characteristics, and hospital outcomes (ICU complications, length of stay, and mortality) of feeding intolerance. RESULTS: Feeding intolerance developed in 56% of the patients and most commonly manifested as large gastric residual volumes (83.9%), abdominal distension (67.2%), and vomiting (63.9%). Length of intubation (OR 1.05, 95% CI 1.03-1.08), ≥1 GI symptom on presentation (OR 0.76, 95% CI 0.59-0.97), and severe obesity (OR 0.29, 95% CI 0.13-0.66) were independently associated with development of feeding intolerance. Compared to feed-tolerant patients, patients with incident feeding intolerance were significantly more likely to suffer cardiac, renal, hepatic, and hematologic complications during their hospitalization. Feeding intolerance was similarly associated with poor outcomes including longer ICU stay (median [IQR] 21.5 [14-30] vs. 15 [9-22] days, P < 0.001), overall hospitalization time (median [IQR] 30.5 [19-42] vs. 24 [15-35], P < 0.001) and in-hospital mortality (33.9% vs. 16.1%, P < 0.001). Feeding intolerance was independently associated with an increased risk of death (HR 3.32; 95% CI 1.97-5.6). CONCLUSIONS: Feeding intolerance is a frequently encountered complication in critically ill COVID-19 patients in a large tertiary care experience and is associated with poor outcomes.


Subject(s)
COVID-19 , Critical Illness , Adult , Humans , Infant, Newborn , Critical Illness/therapy , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Intensive Care Units , Enteral Nutrition/adverse effects , Hospital Mortality
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751396

ABSTRACT

Tissue injury is typically accompanied by inflammation. In Drosophila melanogaster larvae, wound-induced inflammation involves adhesive capture of hemocytes at the wound surface followed by hemocyte spreading to assume a flat, lamellar morphology. The factors that mediate this cell spreading at the wound site are not known. Here, we discover a role for the platelet-derived growth factor/vascular endothelial growth factor-related receptor (Pvr) and its ligand, Pvf1, in blood cell spreading at the wound site. Pvr and Pvf1 are required for spreading in vivo and in an in vitro spreading assay where spreading can be directly induced by Pvf1 application or by constitutive Pvr activation. In an effort to identify factors that act downstream of Pvr, we performed a genetic screen in which select candidates were tested to determine if they could suppress the lethality of Pvr overexpression in the larval epidermis. Some of the suppressors identified are required for epidermal wound closure (WC), another Pvr-mediated wound response, some are required for hemocyte spreading in vitro, and some are required for both. One of the downstream factors, Mask, is also required for efficient wound-induced hemocyte spreading in vivo. Our data reveal that Pvr signaling is required for wound responses in hemocytes (cell spreading) and defines distinct downstream signaling factors that are required for either epidermal WC or hemocyte spreading.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Egg Proteins/physiology , Epidermis , Hemocytes , Larva/genetics , Receptor Protein-Tyrosine Kinases , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...