Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocr Soc ; 8(8): bvae118, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38957656

ABSTRACT

Context: Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective: We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods: Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the ß-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher ß-cell function in the face of lower insulin sensitivity compared to controls. Conclusion: These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.

2.
Mol Carcinog ; 55(5): 1012-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26087469

ABSTRACT

Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. Previous studies to examine the effects of this carcinogen often used short-term and high-dose treatment of area nut extract as a research model, which do not recapitulate the conditions of patients with long-term and habitual use of this substance. To approach authentic mechanism of areca nut-induced oral carcinogenesis that occurs in human, we established four isogenic sublines of oral cells which were chronic exposed to areca nut extract. Without eliciting cytotoxicity or senescence, these four sublines cells exhibited significant increase in invasive ability, along with epithelial-mesenchymal transition. These cells also showed resistance to chemotherapeutic drug and irradiation, accompanying with the augmentation of ABCG2 protein efflux and increased ROS clearance. Moreover, these sublines possessed the characteristics of cancer stemness, as demonstrated by enriched CD24-/CD44+ and CD133+ sub-populations, enhanced spheroid cell formation, and induced expressions of pluripotent stemness regulators, including Gp96, Grp78, Slug, Sox9, Snail, and Foxc2. These stemness regulators were further shown up-regulations in oral cancer patients with areca nut-chewing habit, and were statistically correlated with CD44 expression, a stemness marker. In conclusion, our findings suggested that areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. This study may further contribute to clinical applications in disease prevention, risk assessment or molecular therapeutics on areca nut- associated diseases.


Subject(s)
Areca/chemistry , Mouth Neoplasms/chemically induced , Neoplastic Stem Cells/pathology , Plant Extracts/toxicity , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Endoplasmic Reticulum Chaperone BiP , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mouth Neoplasms/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...