Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32872653

ABSTRACT

An increased incidence of temporomandibular disorders (TMD) among patients with sleep apnea (SA) has been reported. However, the association between TMD and SA has not been demonstrated in a large-scale study. This population-based cohort study with the Taiwan National Health Insurance (NHI) Research Database aimed to understand the association between SA and TMD. We identified adult patients with suspected SA (identified with diagnostic codes) and excluded those diagnosed with TMD prior to SA. Patients with SA diagnosis after polysomnography were also identified as probable SA patients. The index dates were the dates of their initial SA diagnosis. Ten control subjects were matched, by age and sex, to each SA patient, and were assigned the same index dates as the SA patients. In total, 10,408 suspected SA patients (including 4105 probable SA patients) matched to 104,080 control subjects (including 41,050 subjects matched to the probable SA patients) in this study. The TMD incidence rate was significantly higher in the SA patients than in the control subjects (2.8 vs. 1.0 per thousand-patient-year in probable SA patients vs. the corresponding control subjects, with an adjusted incidence rate ratio [95% confidence interval] = 2.5 [2.3-2.7], p < 0.0001). SA patients significantly showed a higher cumulative incidence of TMD than the corresponding control subjects (p < 0.0001). Multivariable Cox regression analysis revealed SA as an independent risk factor for the development of TMD (adjusted hazard ratio = 2.5 [1.7-3.7], p < 0.0001). In summary, this study confirmed an increased TMD incidence in the SA patients. While treating TMD patients, dentists should pay careful attention to the potential underlying SA.


Subject(s)
Sleep Apnea Syndromes , Temporomandibular Joint Disorders , Cohort Studies , Comorbidity , Female , Humans , Male , Middle Aged , Risk Factors , Sleep Apnea Syndromes/epidemiology , Taiwan/epidemiology , Temporomandibular Joint Disorders/epidemiology
3.
J Craniomaxillofac Surg ; 47(11): 1809-1818, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31537441

ABSTRACT

OBJECTIVE: This observational study on adult Taiwanese cadavers focused mainly on the intersection of buccal branches of the facial nerve with Stensen's duct, using the emergence of Stensen's duct as the reference landmark. MATERIALS AND METHODS: Thirty-five cadaveric hemifaces were included in our research. Samples with facial defects due to tumor, trauma, or surgery were all excluded. Buccal branches of the facial nerve were identified according to the Gray's Anatomy 40th edition definition. The distance was measured from the intersection to the emergence of Stensen's duct, running from the anterior border of the parotid gland. RESULTS: In the 35 hemifaces, the number of buccal branch/Stensen's duct intersections ranged from 1 to 5 (average 2.49 ± 1.15). Two-point intersections accounted for 37% (13 hemifaces) of the sample, forming the largest group. Samples of facial nerve buccal branches were divided into four types: Type 1, with two buccal branches, accounted for 37.15% (13/35); Type 2, with three buccal branches, made up 48.59% (17/35) of our samples - the biggest group (Type 2-a was the most frequent pattern among our samples, with two superior buccal branches and one inferior buccal branch, accounting for 34.31% of our samples); Type 3, with four buccal branches, accounted for only 5.7%. Three cases of double Stensen's duct were classified as Type 4, though this is supposed to be a very rare anatomical variation. With Type 2a, the most frequent pattern among our specimens, the distance from the emergence of the Stensen's duct to the emergence point of the first superior buccal branch along the anterior border of the parotid gland was 9.58 ± 5.68 mm. The distance from the emergence point to the emergence of the inferior buccal branch along the anterior border of the parotid gland was 11.03 ± 5.38 mm. The distance (D1) from Stensen's duct to the emergence of the first superiorly located buccal branch of the group Type 2-a was statistically different from the distance (D1) of the other groups (p = 0.02). No direct anastomoses or communicating fibers between upper and lower buccal branches were noted in 11 hemifaces (31%). CONCLUSION: The distribution of buccal branches was described using the emergence of Stensen's duct as a reference landmark. According to our observations, the relationship between the buccal branches and Stensen's duct was much more complicated than described in previous studies. This was the first study to investigate the complete distribution of buccal branches of the facial nerve emerging from the anterior of the parotid gland, and their relative locations and branching numbers.


Subject(s)
Cheek/innervation , Facial Nerve/anatomy & histology , Salivary Ducts , Adult , Cadaver , Humans , Mouth , Parotid Gland/anatomy & histology , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL