Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(21): 4733-4740.e4, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37776863

ABSTRACT

Animals with enhanced dim-light sensitivity are at higher risk of light-induced retinal degeneration when exposed to bright light conditions.1,2,3,4 This trade-off is mediated by the rod photoreceptor sensory protein, rhodopsin (RHO), and its toxic vitamin A chromophore by-product, all-trans retinal.5,6,7,8 Rod arrestin (Arr-1) binds to RHO and promotes sequestration of excess all-trans retinal,9,10 which has recently been suggested as a protective mechanism against photoreceptor cell death.2,11 We investigated Arr-1 evolution in animals at high risk of retinal damage due to periodic bright-light exposure of rod-dominated retinas. Here, we find the convergent evolution of enhanced Arr-1/RHO all-trans-retinal sequestration in owls and deep-diving whales. Statistical analyses reveal a parallel acceleration of Arr-1 evolutionary rates in these lineages, which is associated with the introduction of a rare Arr-1 mutation (Q69R) into the RHO-Arr-1 binding interface. Using in vitro assays, we find that this single mutation significantly enhances RHO-all-trans-retinal sequestration by ∼30%. This functional convergence across 300 million years of evolutionary divergence suggests that Arr-1 and RHO may play an underappreciated role in the photoprotection of the eye, with potentially vast clinical significance.


Subject(s)
Retinal Degeneration , Strigiformes , Animals , Strigiformes/metabolism , Retinaldehyde/metabolism , Whales , Retinal Rod Photoreceptor Cells , Retina/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Rhodopsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL