Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(9): e032405, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639363

ABSTRACT

BACKGROUND: Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS: We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS: We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.


Subject(s)
Biomarkers , Death, Sudden, Cardiac , Disease Models, Animal , Electrocardiography , Myocardial Infarction , Animals , Death, Sudden, Cardiac/etiology , Myocardial Infarction/physiopathology , Myocardial Infarction/complications , Swine , Biomarkers/blood , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Ventricular Fibrillation/physiopathology , Ventricular Fibrillation/etiology , Risk Factors , Male , Ventricular Remodeling , Heart Rate/physiology , Action Potentials , Sympathetic Nervous System/physiopathology , Autonomic Nervous System/physiopathology
2.
J Vis Exp ; (201)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38078615

ABSTRACT

Pulmonary veins (PVs) are the major source of ectopic beats in atrial arrhythmias and play a crucial role in the development and progression of atrial fibrillation (AF). PVs contain myocardial sleeves (MS) composed of cardiomyocytes. MS are implicated in the initiation and maintenance of AF, as they preserve similarities to the cardiac working myocardium, including the ability to generate ectopic electrical impulses. Rodents are widely used and may represent excellent animal models to study the pulmonary vein myocardium since cardiomyocytes are widely present all over the vessel wall. However, precise microdissection and preparation of murine PVs is challenging due to the small organ size and intricate anatomy. We demonstrate a microscopy-guided microdissection protocol for isolating the murine left atrium (LA) together with the PVs. Immunofluorescence staining using cardiac Troponin-T (cTNT) and connexin 43 (Cx43) antibodies is performed to visualize the LA and PVs in full length. Imaging at 10x and 40x magnification provides a comprehensive view of the PV structure as well as detailed insights into the myocardial architecture, particularly highlighting the presence of connexin 43 within the MS.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Animals , Mice , Connexin 43 , Microdissection , Myocardium , Atrial Fibrillation/surgery , Heart Atria , Fluorescent Antibody Technique
3.
Lab Anim (NY) ; 52(4): 85-92, 2023 04.
Article in English | MEDLINE | ID: mdl-36959339

ABSTRACT

Arrhythmias are critical contributors to cardiovascular morbidity and mortality. Therapies are mainly symptomatic and often insufficient, emphasizing the need for basic research to unveil the mechanisms underlying arrhythmias and to enable better and ideally causal therapies. In translational approaches, mice are commonly used to study arrhythmia mechanisms in vivo. Experimental electrophysiology studies in mice are performed under anesthesia with medetomidine/midazolam/fentanyl (MMF) and isoflurane/fentanyl (IF) as commonly used regimens. Despite evidence of adverse effects of individual components on cardiac function, few data are available regarding the specific effects of these regimens on cardiac electrophysiology in mice. Here we present a study investigating the effects of MMF and IF narcosis on cardiac electrophysiology in vivo in C57BL/6N wild-type mice. Telemetry transmitters were implanted in a group of mice, which served as controls for baseline parameters without narcosis. In two other groups of mice, electrocardiogram and invasive electrophysiology studies were performed under narcosis (with either MMF or IF). Basic electrocardiogram parameters, heart rate variability parameters, sinus node and atrioventricular node function, and susceptibility to arrhythmias were assessed. Experimental data suggest a remarkable influence of MMF on cardiac electrophysiology compared with IF and awake animals. While IF only moderately reduced heart rate, MMF led to significant bradycardia, spontaneous arrhythmias, heart rate variability alterations as well as sinus and AV node dysfunction, and increased inducibility of ventricular arrhythmias. On the basis of these observed effects, we suggest avoiding MMF in mice, specifically when studying cardiac electrophysiology, but also whenever a regular heartbeat is required for reliable results, such as in heart failure or imaging research.


Subject(s)
Midazolam , Stupor , Mice , Animals , Midazolam/adverse effects , Fentanyl/adverse effects , Medetomidine/adverse effects , Stupor/chemically induced , Mice, Inbred C57BL , Arrhythmias, Cardiac/chemically induced , Heart Rate
4.
J Vis Exp ; (183)2022 05 05.
Article in English | MEDLINE | ID: mdl-35604201

ABSTRACT

Regular physical exercise is a major contributor to cardiovascular health, influencing various metabolic as well as electrophysiological processes. However, in certain cardiac diseases such as inherited arrhythmia syndromes, e.g., arrhythmogenic cardiomyopathy (ACM) or myocarditis, physical exercise may have negative effects on the heart leading to a proarrhythmogenic substrate production. Currently, the underlying molecular mechanisms of exercise-related proarrhythmogenic remodeling are largely unknown, thus it remains unclear which frequency, duration, and intensity of exercise can be considered safe in the context of disease(s). The proposed method allows to study proarrhythmic/antiarrhythmic effects of physical exercise by combining treadmill training with real-time monitoring of the ECG. Implantable telemetry devices are used to continuously record the ECG of freely moving mice over a period of up to 3 months both at rest and during treadmill training. Data acquisition software with its analysis modules is used to analyze basic ECG parameters such as heart rate, P wave duration, PR interval, QRS interval, or QT duration at rest, during and after training. Furthermore, heart rate variability (HRV) parameters and occurrence of arrhythmias are evaluated. In brief, this manuscript describes a step-by-step approach to experimentally explore exercise induced effects on cardiac electrophysiology, including potential proarrhythmogenic remodeling in mouse models.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Animals , Electrocardiography/methods , Exercise Test , Heart Rate/physiology , Mice , Telemetry
5.
J Vis Exp ; (171)2021 05 23.
Article in English | MEDLINE | ID: mdl-34096914

ABSTRACT

Arrhythmias are common, affecting millions of patients worldwide. Current treatment strategies are associated with significant side effects and remain ineffective in many patients. To improve patient care, novel and innovative therapeutic concepts causally targeting arrhythmia mechanisms are needed. To study the complex pathophysiology of arrhythmias, suitable animal models are necessary, and mice have been proven to be ideal model species to evaluate the genetic impact on arrhythmias, to investigate fundamental molecular and cellular mechanisms, and to identify potential therapeutic targets. Implantable telemetry devices are among the most powerful tools available to study electrophysiology in mice, allowing continuous ECG recording over a period of several months in freely moving, awake mice. However, due to the huge number of data points (>1 million QRS complexes per day), analysis of telemetry data remains challenging. This article describes a step-by-step approach to analyze ECGs and to detect arrhythmias in long-term telemetry recordings using the software, Ponemah, with its analysis modules, ECG Pro and Data Insights, developed by Data Sciences International (DSI). To analyze basic ECG parameters, such as heart rate, P wave duration, PR interval, QRS interval, or QT duration, an automated attribute analysis was performed using Ponemah to identify P, Q, and T waves within individually adjusted windows around detected R waves. Results were then manually reviewed, allowing adjustment of individual annotations. The output from the attribute-based analysis and the pattern recognition analysis was then used by the Data Insights module to detect arrhythmias. This module allows an automatic screening for individually defined arrhythmias within the recording, followed by a manual review of suspected arrhythmia episodes. The article briefly discusses challenges in recording and detecting ECG signals, suggests strategies to improve data quality, and provides representative recordings of arrhythmias detected in mice using the approach described above.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Animals , Arrhythmias, Cardiac/diagnosis , Heart Rate , Mice , Telemetry
6.
Hum Mutat ; 41(11): 1892-1905, 2020 11.
Article in English | MEDLINE | ID: mdl-32741053

ABSTRACT

The episodic ataxias (EA) are a group of inherited neurological diseases characterized by paroxysmal cerebellar incoordination. There exist nine forms of episodic ataxia with distinct neurological symptoms and genetic origins. Episodic ataxia type 6 (EA6) differs from other EA forms in long attack duration, epilepsy and absent myokymia, nystagmus, and tinnitus. It has been described in seven families, and mutations in SLC1A3, the gene encoding the glial glutamate transporter EAAT1, were reported in each family. How these mutations affect EAAT1 expression, subcellular localization, and function, and how such alterations result in the complex neurological phenotype of EA6 is insufficiently understood. We here compare the functional consequences of all currently known mutations by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch clamp recordings of EAAT1 transport and anion currents. We observed impairments of multiple EAAT1 properties ranging from changes in transport function, impaired trafficking to increased protein expression. Many mutations caused only slight changes illustrating how sensitively the cerebellum reacts on impaired EAAT1 functions.


Subject(s)
Ataxia/genetics , Excitatory Amino Acid Transporter 1/genetics , Amino Acid Sequence , HEK293 Cells , Humans , Mutation , Phenotype , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...