Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Lab Chip ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888211

ABSTRACT

Brain metastases are common in triple-negative breast cancer (TNBC), suggesting a complex process of cancer spread. The mechanisms enabling TNBC cell adaptation and proliferation in the brain remain unclear. Small extracellular vesicles (sEVs) play a crucial role in communication between breast carcinoma cells and the brain. However, the lack of relevant models hinders understanding of sEV-mediated communication. The present study assesses the impact of brain organoid-derived sEVs (BO-sEVs) on various behaviours of the MDA-MB-231 cell line, chosen as a representative of TNBC in a 3D microfluidic model. Our results demonstrate that 150-200 nm sEVs expressing CD63, CD9, and CD81 from brain organoid media decrease MDA-MB-231 cell proliferation, enhance their wound-healing capacity, alter their morphology into more mesenchymal mode, and increase their stemness. BO-sEVs led to heightened PD-L1, CD49f, and vimentin levels of expression in MDA-MB-231 cells, suggesting an amplified immunosuppressive, stem-like, and mesenchymal phenotype. Furthermore, these sEVs also induced the expression of neural markers such as GFAP in carcinoma cells. The cytokine antibody profiling array also showed that BO-sEVs enhanced the secretion of MCP-1, IL-6, and IL-8 by MDA-MB-231 cells. Moreover, sEVs significantly enhance the migration and invasion of carcinoma cells toward brain organoids in a 3D organoid-on-a-chip system. Our findings emphasize the potential significance of metastatic site-derived sEVs as pivotal mediators in carcinoma progression and adaptation to the brain microenvironment, thereby unveiling novel therapeutic avenues.

2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928228

ABSTRACT

Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.


Subject(s)
Brain , Neurodegenerative Diseases , Humans , Brain/pathology , Brain/virology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/virology , COVID-19/virology , SARS-CoV-2/physiology , Organoids/virology , Organoids/pathology , Models, Biological , Tissue Engineering/methods , Blood-Brain Barrier/metabolism
3.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38915547

ABSTRACT

INTRODUCTION: Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. METHODS: Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. RESULTS: We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. DISCUSSION: APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD.

4.
Int J Mol Sci ; 24(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834458

ABSTRACT

Alzheimer's disease (AD) is a growing global health crisis affecting millions and incurring substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and underdiagnoses being prevalent. There is an increased focus on putative, blood-based biomarkers that may be useful for the diagnosis as well as early detection of AD. In the present study, we used an unbiased combination of machine learning and functional network analyses to identify blood gene biomarker candidates in AD. Using supervised machine learning, we also determined whether these candidates were indeed unique to AD or whether they were indicative of other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our analyses showed that genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase were the best-performing genes for identifying AD patients relative to cognitively healthy controls. This transcriptomic signature, however, was not unique to AD, and subsequent machine learning showed that this signature could also predict PD and ALS relative to controls without neurodegenerative disease. Combined, our results suggest that mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may be less effective in diagnosing the specific neurodegenerative disease.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Parkinson Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Transcriptome , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/metabolism , Biomarkers/metabolism
5.
Biomed Mater ; 18(5)2023 07 27.
Article in English | MEDLINE | ID: mdl-37451254

ABSTRACT

During the final stage of cancer metastasis, tumor cells embed themselves in distant capillary beds, from where they extravasate and establish secondary tumors. Recent findings underscore the pivotal roles of blood/lymphatic flow and shear stress in this intricate tumor extravasation process. Despite the increasing evidence, there is a dearth of systematic and biomechanical methodologies that accurately mimic intricate 3D microtissue interactions within a controlled hydrodynamic microenvironment. Addressing this gap, we introduce an easy-to-operate 3D spheroid-microvasculature-on-a-chip (SMAC) model. Operating under both static and regulated flow conditions, the SMAC model facilitates the replication of the biomechanical interplay between heterogeneous tumor spheroids and endothelium in a quantitative manner. Serving as anin vitromodel for metastasis mechanobiology, our model unveils the phenomena of 3D spheroid-induced endothelial compression and cell-cell junction degradation during tumor migration and expansion. Furthermore, we investigated the influence of shear stress on endothelial orientation, polarization, and tumor spheroid expansion. Collectively, our SMAC model provides a compact, cost-efficient, and adaptable platform for probing the mechanobiology of metastasis.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Neoplasms/pathology , Microvessels , Endothelium , Lab-On-A-Chip Devices , Tumor Microenvironment
6.
Sci Adv ; 9(23): eadg2248, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37285437

ABSTRACT

Numerous viruses use specialized surface molecules called fusogens to enter host cells. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect the brain and are associated with severe neurological symptoms through poorly understood mechanisms. We show that SARS-CoV-2 infection induces fusion between neurons and between neurons and glia in mouse and human brain organoids. We reveal that this is caused by the viral fusogen, as it is fully mimicked by the expression of the SARS-CoV-2 spike (S) protein or the unrelated fusogen p15 from the baboon orthoreovirus. We demonstrate that neuronal fusion is a progressive event, leads to the formation of multicellular syncytia, and causes the spread of large molecules and organelles. Last, using Ca2+ imaging, we show that fusion severely compromises neuronal activity. These results provide mechanistic insights into how SARS-CoV-2 and other viruses affect the nervous system, alter its function, and cause neuropathology.


Subject(s)
COVID-19 , Animals , Humans , Mice , SARS-CoV-2/physiology , Neurons , Brain , Neuroglia
7.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291062

ABSTRACT

Cortical organoids are 3D structures derived either from human embryonic stem cells or human induced pluripotent stem cells with their use exploding in recent years due to their ability to better recapitulate the human brain in vivo in respect to organization; differentiation; and polarity. Adeno-associated viruses (AAVs) have emerged in recent years as the vectors of choice for CNS-targeted gene therapy. Here; we compare the use of AAVs as a mode of gene expression in cortical organoids; over traditional methods such as lipofectamine and electroporation and demonstrate its ease-of-use in generating quick disease models through expression of different variants of the central gene-TDP-43-implicated in amyotrophic lateral sclerosis and frontotemporal dementia.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Humans , Dependovirus/genetics , DNA-Binding Proteins/metabolism , Gene Expression , Induced Pluripotent Stem Cells/metabolism , Organoids/metabolism , Stem Cells
8.
Nat Commun ; 12(1): 4730, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354063

ABSTRACT

Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.


Subject(s)
Brain/growth & development , Brain/physiology , Lab-On-A-Chip Devices , Neurogenesis/physiology , Organoids/growth & development , Organoids/physiology , Animals , Brain/cytology , Culture Media , Electrophysiological Phenomena , Extracellular Matrix/physiology , Feasibility Studies , Gene Expression Profiling , Humans , Hydrogels , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Models, Anatomic , Models, Neurological , Neurogenesis/genetics , Neuroglia/cytology , Neuroglia/physiology , Organ Culture Techniques/instrumentation , Organ Culture Techniques/methods , Organoids/cytology , Swine
9.
Mol Cells ; 43(12): 1011-1022, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33293480

ABSTRACT

Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATACseq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Cell Differentiation/genetics , Chromatin/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Humans , Neural Stem Cells/metabolism , Promoter Regions, Genetic , Protein Binding/genetics
10.
Genes (Basel) ; 11(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33050006

ABSTRACT

Given the difficulties of obtaining diseased cells, differentiation of neurons from patient-specific human induced pluripotent stem cells (iPSCs) with neural progenitor cells (NPCs) as intermediate precursors is of great interest. While cellular and transcriptomic changes during the differentiation process have been tracked, little attention has been given to examining spatial re-organization, which has been revealed to control gene regulation in various cells. To address the regulatory mechanism by 3D chromatin structure during neuronal differentiation, we examined the changes that take place during differentiation process using two cell types that are highly valued in the study of neurodegenerative disease - iPSCs and NPCs. In our study, we used Hi-C, a derivative of chromosome conformation capture that enables unbiased, genome-wide analysis of interaction frequencies in chromatin. We showed that while topologically associated domains remained mostly the same during differentiation, the presence of differential interacting regions in both cell types suggested that spatial organization affects gene regulation of both pluripotency maintenance and neuroectodermal differentiation. Moreover, closer analysis of promoter-promoter pairs suggested that cell fate specification is under the control of cis-regulatory elements. Our results are thus a resourceful addition in benchmarking differentiation protocols and also provide a greater appreciation of NPCs, the common precursors from which required neurons for applications in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, schizophrenia and spinal cord injuries are utilized.


Subject(s)
Biomarkers/metabolism , Cell Differentiation , Cellular Reprogramming , Chromatin/metabolism , Gene Expression Regulation, Developmental , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Chromatin/genetics , Genome, Human , Humans , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology
11.
Stem Cell Rev Rep ; 16(6): 1316-1327, 2020 12.
Article in English | MEDLINE | ID: mdl-32975781

ABSTRACT

The effects of gene body DNA methylation on gene regulation still remains highly controversial. In this study, we generated whole genome bisulfite sequencing (WGBS) data with high sequencing depth in induced pluripotent stem cell (iPSC) and neuronal progentior cell (NPC), and investigated the relationship between DNA methylation changes in CpG islands (CGIs) and corresponding gene expression during NPC differentiation. Interestingly, differentially methylated CGIs were more abundant in intragenic regions compared to promoters and these methylated intragenic CGIs (iCGIs) were associated with neuronal development-related genes. When we compared gene expression level of methylated and unmethylated CGIs in intragenic regions, DNA methylation of iCGI was positively correlated with gene expression in contrast with promoter CGIs (pCGIs). To gain insight into regulatory mechanism mediated by iCGI DNA methylation, we executed motif searching in hypermethylated iCGIs and found NEUROD1 as a hypermethylated iCGI binding transcription factor. This study highlights give rise to possibility of activating role of hypermethylation in iCGIs and involvement of neuronal development related TFs. Graphical Abstract The relationship between iCGI DNA methylation and expression of associated genes in neuronal developmental process. During iPSC to NPCdifferentiation, iCGI containing neural developmental genes show iCGI's DNA hypermethylation which is accompanied by gene activation and NEUROD1which is one of the core neuronal TFs interacts with hypermethylated iCGI regions.


Subject(s)
Cell Differentiation/genetics , CpG Islands/genetics , DNA Methylation/genetics , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Cell Lineage/genetics , Epigenesis, Genetic , Humans , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neural Stem Cells/metabolism , Neurons/cytology , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism
12.
Nano Lett ; 19(9): 6517-6523, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31461289

ABSTRACT

While neural cell transplantation represents a promising therapy for neurodegenerative diseases, the formation of functional networks of transplanted cells with host neurons constitutes one of the challenging steps. Here, we introduce a magnetic guidance methodology that controls neurite growth signaling via magnetic nanoparticles (MNPs) conjugated with antibodies targeting the deleted in colorectal cancer (DCC) receptor (DCC-MNPs). Activation of the DCC receptors by clusterization and subsequent axonal growth of the induced neuronal (iN) cells was performed in a spatially controlled manner. In addition to the directionality of the magnetically controlled axon projection, axonal growth of the iN cells assisted the formation of functional connections with pre-existing primary neurons. Our results suggest magnetic guidance as a strategy for improving neuronal connectivity by spatially guiding the axonal projections of transplanted neural cells for synaptic interactions with the host tissue.


Subject(s)
Antibodies/chemistry , Axons/metabolism , Cellular Reprogramming , DCC Receptor/metabolism , Induced Pluripotent Stem Cells/metabolism , Magnetic Fields , Magnetite Nanoparticles/chemistry , DCC Receptor/antagonists & inhibitors , Humans , Induced Pluripotent Stem Cells/cytology , Neurites/metabolism
13.
ACS Appl Mater Interfaces ; 11(17): 15344-15353, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30974942

ABSTRACT

Myelination by oligodendrocytes (OLs) is a key developmental milestone in terms of the functions of the central nervous system (CNS). Demyelination caused by defects in OLs is a hallmark of several CNS disorders. Although a potential therapeutic strategy involves treatment with the myelin-forming cells, there is no readily available source of these cells. OLs can be differentiated from pluripotent stem cells; however, there is a lack of efficient culture systems that generate functional OLs. Here, we demonstrate biomimetic approaches to promote OL differentiation from human-induced pluripotent stem cells (iPSCs) and to enhance the maturation and myelination capabilities of iPSC-derived OL (iPSC-OL). Functionalization of culture substrates using the brain extracellular matrix (BEM) derived from decellularized human brain tissue enhanced the differentiation of iPSCs into myelin-expressing OLs. Co-culture of iPSC-OL with induced neuronal (iN) cells on BEM substrates, which closely mimics the in vivo brain microenvironment for myelinated neurons, not only enhanced myelination of iPSC-OL but also improved electrophysiological function of iN cells. BEM-functionalized aligned electrospun nanofibrous scaffolds further promoted the maturation of iPSC-OLs, enhanced the production of myelin sheath-like structures by the iPSC-OL, and enhanced the neurogenesis of iN cells. Thus, the biomimetic strategy presented here can generate functional OLs from stem cells and facilitate myelination by providing brain-specific biochemical, biophysical, and structural signals. Our system comprising stem cells and brain tissue from human sources could help in the establishment of human demyelination disease models and the development of regenerative cell therapy for myelin disorders.


Subject(s)
Brain/metabolism , Extracellular Matrix/chemistry , Myelin Sheath/physiology , Cell Differentiation , Cell Line , Coculture Techniques , Electrophysiological Phenomena , Humans , Induced Pluripotent Stem Cells/cytology , Myelin Basic Protein/metabolism , Nanofibers/chemistry , Neurogenesis , Neurons/cytology , Neurons/metabolism , Neurotransmitter Agents/pharmacology , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism
14.
Biomater Sci ; 6(12): 3388-3396, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30371689

ABSTRACT

Cells can communicate with one another through physical connections and chemical signaling, activating various signaling pathways that can affect cellular functions and behaviors. In taste buds, taste cells transmit taste information to neurons via paracrine signaling. However, no previous studies have reported the in vitro co-culture of taste and neuronal cells, which allows us to monitor intercellular communications and better understand the mechanism of taste perception. Here, we introduce the first investigation on the proximate assembly and co-culture of taste cells and neurons to monitor the intercellular transmission of taste signals. Taste cells and neurons are placed closely using a pair of single-stranded oligonucleotides conjugated with polyethylene glycol and a phospholipid. Complementary oligonucleotide conjugates are anchored into the cellular membrane of neonatal taste cells and embryonic hippocampal neuronal cells, respectively, and then the cells are self-assembled into a functional multicellular unit for taste perception. Treatment of the assembled cells with a bitter tastant generates the sequential influx of calcium ions into the cytoplasm in taste cells and then in neuronal cells. Our work demonstrates that the cellular self-assembly is critical for efficient taste signal transduction, which can be used as a promising platform to construct cell-based biosensors for taste sensing.


Subject(s)
Cell Communication , Signal Transduction , Taste Buds/cytology , Animals , Biosensing Techniques/methods , Cells, Cultured , Coculture Techniques/methods , Hippocampus/cytology , Mice , Oligodeoxyribonucleotides/pharmacology , Taste Buds/drug effects , Taste Buds/physiology , Taste Perception
15.
Biomater Res ; 22: 5, 2018.
Article in English | MEDLINE | ID: mdl-29497562

ABSTRACT

BACKGROUND: Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. METHOD: In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. RESULTS: Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. CONCLUSIONS: In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

16.
Nat Biomed Eng ; 2(7): 522-539, 2018 07.
Article in English | MEDLINE | ID: mdl-30948831

ABSTRACT

Biophysical cues can improve the direct reprogramming of fibroblasts into neurons that can be used for therapeutic purposes. However, the effects of a three-dimensional (3D) environment on direct neuronal reprogramming remain unexplored. Here, we show that brain extracellular matrix (BEM) decellularized from human brain tissue facilitates the plasmid-transfection-based direct conversion of primary mouse embryonic fibroblasts into induced neuronal (iN) cells. We first show that two-dimensional (2D) surfaces modified with BEM significantly increase the generation efficiency of iN cells and enhance neuronal transdifferentiation and maturation. Moreover, in an animal model of ischaemic stroke, iN cells generated on the BEM substrates and transplanted into the brain led to significant improvements in locomotive behaviours. We also show that compared with the 2D BEM substrates, 3D BEM hydrogels recapitulating brain-like microenvironments further promote neuronal conversion and potentiate the functional recovery of the animals. Our findings suggest that 3D microenvironments can boost nonviral direct reprogramming for the generation of therapeutic neuronal cells.


Subject(s)
Brain/metabolism , Cellular Reprogramming , Extracellular Matrix/metabolism , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Transdifferentiation , Cellular Microenvironment , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Hydrogels/chemistry , Locomotion , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neovascularization, Physiologic , Neurons/cytology , Neurons/metabolism , Neurons/transplantation , Recovery of Function , Stroke/metabolism , Stroke/pathology , Stroke/therapy , Transcriptome
17.
Biomaterials ; 151: 24-37, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29055775

ABSTRACT

Artificial taste devices for tastant sensing and taste information standardization are attracting increasing attention with the exponential growth of the food and beverage industries. Despite recent developments in artificial taste sensors incorporating polymers, lipid membranes, and synthetic vesicles, current devices have limited functionality and sensitivity, and are complex to manufacture. Moreover, such synthetic systems cannot simulate the taste signal transmissions that are critical for complicated taste perception. The current document describes a primary taste cell-based artificial tongue that can mimic taste sensing. To maintain viable and functional taste cells required for in vitro tastant sensing, a tongue extracellular matrix (TEM) prepared by decellularization of tongue tissue was applied to two- and three-dimensional taste cell cultures. The TEM-based system recreates the tongue's microenvironment and significantly improves the functionality of taste cells for sensing tastant molecules by enhancing cellular adhesion and gustatory gene expression compared with conventional collagen-based systems. The TEM-based platform simulates signal transmission from tastant-treated taste cells to adjacent neuronal cells, which was impossible with previous artificial taste sensors. The artificial tongue device may provide highly efficient, functional sensors for tastant detection and in vitro organ models that mimic the tongue allowing elucidation of the mechanisms of taste.


Subject(s)
Equipment Design/methods , Extracellular Matrix/chemistry , Taste/physiology , Tongue/metabolism , Biomimetics/methods , Calcium/chemistry , Calcium/metabolism , Cell Adhesion , Cell Count/methods , Cell Culture Techniques , Cell Line , Cell Proliferation , Cell Survival , Cellular Microenvironment , Food , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Lab-On-A-Chip Devices , Neurons/cytology , Phenotype , Sensitivity and Specificity , Surface Properties
18.
Biomacromolecules ; 18(10): 3060-3072, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28876908

ABSTRACT

Electrically conductive hyaluronic acid (HA) hydrogels incorporated with single-walled carbon nanotubes (CNTs) and/or polypyrrole (PPy) were developed to promote differentiation of human neural stem/progenitor cells (hNSPCs). The CNT and PPy nanocomposites, which do not easily disperse in aqueous phases, dispersed well and were efficiently incorporated into catechol-functionalized HA (HA-CA) hydrogels by the oxidative catechol chemistry used for hydrogel cross-linking. The prepared electroconductive HA hydrogels provided dynamic, electrically conductive three-dimensional (3D) extracellular matrix environments that were biocompatible with hNSPCs. The HA-CA hydrogels containing CNT and/or PPy significantly promoted neuronal differentiation of human fetal neural stem cells (hfNSCs) and human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with improved electrophysiological functionality when compared to differentiation of these cells in a bare HA-CA hydrogel without electroconductive motifs. Calcium channel expression was upregulated, depolarization was activated, and intracellular calcium influx was increased in hNSPCs that were differentiated in 3D electroconductive HA-CA hydrogels; these data suggest a potential mechanism for stem cell neurogenesis. Overall, our bioinspired, electroconductive HA hydrogels provide a promising cell-culture platform and tissue-engineering scaffold to improve neuronal regeneration.


Subject(s)
Hydrogels/chemistry , Neural Stem Cells/cytology , Neurogenesis , Tissue Scaffolds/chemistry , Catechols/chemistry , Cell Line , Electric Conductivity , Humans , Hyaluronic Acid/chemistry , Hydrogels/pharmacology , Nanotubes, Carbon/chemistry , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Polymers/chemistry , Pyrroles/chemistry
19.
Adv Healthc Mater ; 5(22): 2931-2941, 2016 11.
Article in English | MEDLINE | ID: mdl-27774775

ABSTRACT

Small interfering RNA (siRNA) delivery can provide an effective therapy for treating viral diseases by silencing genes involved in viral replication. In this study, a liver-targeting formulation of lipidoid nanoparticle for delivery of siRNA that targets protein kinase C-related kinase 2 (PRK2) to inhibit hepatitis C virus (HCV) replication is reported. The most effective, minimally cytotoxic lipidoid for siRNA delivery to hepatic cells is identified from a small library of alkyl epoxide-polyamine conjugates. In vitro transfection of PRK2 siRNA (siPRK2) using this lipidoid induces significant silencing of PRK2 (≈80%), suppressing HCV replication in human hepatic cells transfected with the HCV subgenomic replicon. Systemic administration of siPRK2 using the lipidoid nanoparticles results in significant reduction of host PRK2 in the mouse liver (≈60%). This treatment significantly suppresses HCV replication in an HCV-xenograft mouse model. siRNA delivery to the liver is further improved via galactosylation of the lipidoid. Compared with the unmodified lipidoid formulation, galactosylated lipidoids induce greater silencing of host PRK2 in mouse livers (≈80%) and more rapid suppression of HCV replication in an HCV-xenograft mouse. This study suggests that galactosylated lipidoid nanoparticles could provide a treatment for hepatitis C by mediating delivery of anti-viral RNA interference therapeutics to the liver.


Subject(s)
Antiviral Agents/administration & dosage , Hepacivirus/drug effects , Nanoparticles/administration & dosage , RNA, Small Interfering/administration & dosage , Virus Replication/drug effects , Animals , Cell Line , Hepatitis C/drug therapy , Hepatitis C/virology , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Liver/drug effects , Liver/virology , Male , Mice , Mice, Inbred BALB C , Protein Kinase C/metabolism , RNA Interference/physiology , Transfection/methods
20.
ACS Appl Mater Interfaces ; 8(40): 26470-26481, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27643920

ABSTRACT

Stimuli-responsive hybrid materials that combine the dynamic nature self-assembled organic nanostructures, unique photophysical properties of inorganic materials, and molecular recognition capability of biopolymers can provide sophisticated nanoarchitectures with unprecedented functions. In this report, infrared (IR)-responsive self-assembled peptide-carbon nanotube (CNT) hybrids that enable the spatiotemporal control of bioactive ligand multivalency and subsequent human neural stem cell (hNSC) differentiation are reported. The switching between the ligand presented and hidden states was controlled via IR-induced photothermal heating of CNTs, followed by the shrinkage of the thermoresponsive dendrimers that exhibited lower critical solution temperature (LCST) behavior. The control of the ligand spacing via molecular coassembly and IR-triggered ligand presentation promoted the sequential events of integrin receptor clustering and the differentiation of hNSCs into electrophysiologically functional neurons. Therefore, the combination of our nanohybrid with biomaterial scaffolds may be able to further improve effectiveness, durability, and functionality of the nanohybrid systems for spatiotemporal control of stem cell differentiation. Moreover, these responsive hybrids with remote-controllable functions can be developed as therapeutics for the treatment of neuronal disorders and as materials for the smart control of cell function.


Subject(s)
Nanotubes, Carbon , Biocompatible Materials , Cell Differentiation , Humans , Ligands , Neural Stem Cells , Peptides , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...