Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399860

ABSTRACT

This study investigates the synergistic effects of incorporating graphene oxide (GO) and polyvinyl alcohol (PVA) fibers into cement paste mixtures, aiming to modify their rheological properties and flexural behaviors with resistance to crack formation. The relationship between static yield stress and critical shear strain was examined in ten cement paste mixtures with varying concentrations of 6 mm and 12 mm PVA fibers and 0.05% GO. Additionally, viscosity analyses were performed. For the specimens fabricated from these mixtures, flexural strength tests were conducted using the Digital Image Correlation (DIC) technique for precise strain analysis under load history. The results indicated a significant increase in static yield stress, viscosity, and critical shear strain due to the combined addition of GO and PVA fibers, more so than when added individually. Notably, in PVA fiber-reinforced cement mixtures, the integration of GO increased the crack initiation load by up to 23% and enhanced pre-crack strain by 30 to 50%, demonstrating a notable delay in crack initiation and a reduction in crack propagation. Microstructural analyses using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) revealed a concentrated presence of GO around and on the PVA fibers. This promotes increased C-S-H gel formation, resulting in a denser microstructure. Additionally, GO effectively interacts with PVA fibers, enhancing the adherence of hydration products at their interface.

2.
J Air Waste Manag Assoc ; 71(7): 906-922, 2021 07.
Article in English | MEDLINE | ID: mdl-33818306

ABSTRACT

To achieve a more sustainable waste-to-energy (WTE) process, the recycling of solid waste incineration (MSWI) bottom ash (BA) has received large attention nowadays. This study investigated how WTE BA form is changed after the hydration and the impacts of WTE BA hydration on its leaching characteristics by using geometrical and leaching tests when incorporated in cement matrix for the recycling. The material composition and characteristics of anhydrous BA, hydrated BA, cement paste, Portland cement concrete (PCC), and BA-combined PCC were evaluated through scanning electron microscopy, X-ray spectroscopy and X-ray diffraction analyses. The results confirmed that the WTE BA newly formed a complex phase of hydration products in a cement matrix. Synthetic precipitation leaching procedure (SPLP) test was also conducted to investigate the leaching behaviors of alkaline components and metals of BA in the crushed BA-PCC samples. Through the leaching study, the leachability of crushed BA-combined concrete was rigorously evaluated when recycled as construction materials (e.g. base, subbase, subdrainage, etc.), which is the worst-case scenario. The results revealed that the release of highly alkaline elements increases with increasing BA content. However, the release of trace metals was reduced by 20-30% significantly when mixed properly with Portland cement concrete (PCC), which is due to both physical and chemical binding in cement hydration products. In addition, the thresholds of water regulations, set by the World Health Organization (WHO) and the Environmental Protection Agency (EPA) of the United States, were assessed as the basis for evaluating the extent of the risk of the leaching of toxic materials.Implications: This study investigated how waste to energy (WTE) bottom ash (BA) form is changed after the hydration and the impacts of WTE BA hydration on its environmental leaching characteristics by using geometrical and leaching tests when incorporated in cement matrix for the recycling. Incorporating of WTE BA in cement mixture can form new mineralogical phases of hydration products in cement matrices such as Copper Hydrogen Arsenate Hydrate and Jahnsite. A significant reduction of alkaline elements (Si, Al, and K) from crushed PCC mixed with WTE BA due to the hydration. The lowest concentrations of major alkaline elements leached from the crushed PCC containing either 10% or 20% of BA contents. The averaged leaching concentration of detected elements is substantially below the water quality guidelines (provided by U.S. EPA and WHO) except Al.


Subject(s)
Coal Ash , Incineration , Construction Materials , Recycling , Solid Waste/analysis
3.
Nanomaterials (Basel) ; 10(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138107

ABSTRACT

With the continuous research efforts, sophisticated predictive molecular dynamics (MD) models for C-S-H have been developed, and the application of MD simulation has been expanded from fundamental understanding of C-S-H to nano-engineered cement composites. This paper comprehensively reviewed the current state of MD simulation on calcium-silicate-hydrate (C-S-H) and its diverse applications to nano-engineered cement composites, including carbon-based nanomaterials (i.e., carbon nanotube, graphene, graphene oxide), reinforced cement, cement-polymer nanocomposites (with an application on 3D printing concrete), and chemical additives for improving environmental resistance. In conclusion, the MD method could not only compute but also visualize the nanoscale behaviors of cement hydrates and other ingredients in the cement matrix; thus, fundamental properties of C-S-H structure and its interaction with nanoparticles can be well understood. As a result, the MD enabled us to identify and evaluate the performance of new advanced nano-engineered cement composites.

4.
Materials (Basel) ; 13(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679661

ABSTRACT

Over the past decades, extensive studies on municipal solid waste incineration (MSWI) ashes have been performed to develop more effective recycling and waste management programs. Despite the large amount of research activities and the resulting improvements to MSWI ashes, the recycling programs for MSWI ashes are limited. For instance, although the U.S. generates more MSWI ashes than any other country in the world, its reuse/recycle programs are limited; bottom ash and fly ash are combined and disposed of in landfills. Reuse of MSWI ashes in the construction sectors (i.e., geomaterials, asphalt paving, and concrete products) as replacements for raw materials is one of most promising options because of the large consumption and relatively lenient environmental criteria. The main objective of this study was to comprehensively review MSWI ashes with regard to specific engineering properties and their performance as construction materials. The focus was on (1) the current practices of MSWI ash management (in particular, a comparison between European countries and the U.S.), (2) the engineering properties and performance of ashes when they are used as substitutes of construction materials and for field applications, and (3) the environmental properties and criteria for the use of MSWI ashes. Overall, the asphalt and concrete applications are the most promising, from both the mechanical and leachate viewpoints. However, cons were also observed: high absorption of MSWI ash requires a high asphalt binder content in hot-mix asphalt, and metallic elements in the ash may generate H2 gas in the high-pH environment of the concrete. These side effects can be predicted via material characterization (i.e., chemical and physical), and accordingly, proper treatment and/or modified mix proportioning can be performed prior to use.

5.
Nanomaterials (Basel) ; 8(9)2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30213065

ABSTRACT

This paper aims to investigate the effects of edge-oxidized graphene oxide nanoflakes (EOGO) on the mechanical properties and sorptivity of cement composites. The EOGO used in this study was produced by a mechanochemical process that assists the production of EOGO in large quantities at significantly reduced costs, enabling its practical use for infrastructure construction. The scope of this work includes the use of EOGO as an additive in cement composites, including cement paste and mortar. This study explores two mixing methods: The dry-mix method and the wet-mix method. The dry-mix method uses EOGO as dry powder in cement composites whereas the wet-mix method uses a water-dispersed solution (using a sonication process). Varied percentages of EOGO, ranging from 0.01% to 1.0%, were used for both methods. To evaluate the concrete durability, the effect of EOGO addition on sorptivity of the cement composites was investigated by performing total porosity and water sorptivity tests. It was found that 0.05% of EOGO is the optimum proportion to exert the highest strength in compressive and flexural strength tests. In addition, the dry-mix method is comparable to the wet-mix method (with dispersion of EOGO), thus more practical for field engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...